@inproceedings{durrani-etal-2025-editing,
title = "Editing Across Languages: A Survey of Multilingual Knowledge Editing",
author = "Durrani, Nadir and
Mousi, Basel and
Dalvi, Fahim",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.803/",
doi = "10.18653/v1/2025.emnlp-main.803",
pages = "15906--15918",
ISBN = "979-8-89176-332-6",
abstract = "While Knowledge Editing has been extensively studied in monolingual settings, it remains underexplored in multilingual contexts. This survey systematizes recent research on Multilingual Knowledge Editing (MKE), a growing subdomain of model editing focused on ensuring factual edits generalize reliably across languages. We present a comprehensive taxonomy of MKE methods, covering parameter-based, memory-based, fine-tuning, and hypernetwork approaches. We survey available benchmarks, summarize key findings on method effectiveness and transfer patterns, and identify persistent challenges such as cross-lingual propagation, language anisotropy, and limited evaluation for low-resource and culturally specific languages. We also discuss broader concerns such as stability and scalability of multilingual edits. Our analysis consolidates a rapidly evolving area and lays the groundwork for future progress in editable language-aware LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="durrani-etal-2025-editing">
<titleInfo>
<title>Editing Across Languages: A Survey of Multilingual Knowledge Editing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nadir</namePart>
<namePart type="family">Durrani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Basel</namePart>
<namePart type="family">Mousi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahim</namePart>
<namePart type="family">Dalvi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>While Knowledge Editing has been extensively studied in monolingual settings, it remains underexplored in multilingual contexts. This survey systematizes recent research on Multilingual Knowledge Editing (MKE), a growing subdomain of model editing focused on ensuring factual edits generalize reliably across languages. We present a comprehensive taxonomy of MKE methods, covering parameter-based, memory-based, fine-tuning, and hypernetwork approaches. We survey available benchmarks, summarize key findings on method effectiveness and transfer patterns, and identify persistent challenges such as cross-lingual propagation, language anisotropy, and limited evaluation for low-resource and culturally specific languages. We also discuss broader concerns such as stability and scalability of multilingual edits. Our analysis consolidates a rapidly evolving area and lays the groundwork for future progress in editable language-aware LLMs.</abstract>
<identifier type="citekey">durrani-etal-2025-editing</identifier>
<identifier type="doi">10.18653/v1/2025.emnlp-main.803</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.803/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>15906</start>
<end>15918</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Editing Across Languages: A Survey of Multilingual Knowledge Editing
%A Durrani, Nadir
%A Mousi, Basel
%A Dalvi, Fahim
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F durrani-etal-2025-editing
%X While Knowledge Editing has been extensively studied in monolingual settings, it remains underexplored in multilingual contexts. This survey systematizes recent research on Multilingual Knowledge Editing (MKE), a growing subdomain of model editing focused on ensuring factual edits generalize reliably across languages. We present a comprehensive taxonomy of MKE methods, covering parameter-based, memory-based, fine-tuning, and hypernetwork approaches. We survey available benchmarks, summarize key findings on method effectiveness and transfer patterns, and identify persistent challenges such as cross-lingual propagation, language anisotropy, and limited evaluation for low-resource and culturally specific languages. We also discuss broader concerns such as stability and scalability of multilingual edits. Our analysis consolidates a rapidly evolving area and lays the groundwork for future progress in editable language-aware LLMs.
%R 10.18653/v1/2025.emnlp-main.803
%U https://aclanthology.org/2025.emnlp-main.803/
%U https://doi.org/10.18653/v1/2025.emnlp-main.803
%P 15906-15918
Markdown (Informal)
[Editing Across Languages: A Survey of Multilingual Knowledge Editing](https://aclanthology.org/2025.emnlp-main.803/) (Durrani et al., EMNLP 2025)
ACL