@inproceedings{kwon-etal-2025-astra,
title = "{ASTRA}: A Negotiation Agent with Adaptive and Strategic Reasoning via Tool-integrated Action for Dynamic Offer Optimization",
author = "Kwon, Deuksin and
Hae, Jiwon and
Clift, Emma and
Shamsoddini, Daniel and
Gratch, Jonathan and
Lucas, Gale",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.821/",
pages = "16228--16249",
ISBN = "979-8-89176-332-6",
abstract = "Negotiation requires dynamically balancing self-interest and cooperation within the flow of conversation to maximize one{'}s own utility. Yet, existing agents struggle due to bounded rationality in human data, low adaptability to counterpart behavior, and limited strategic reasoning. To address this, we introduce principle-driven negotiation agents, powered by ASTRA, a novel framework for turn-level offer optimization grounded in two core principles: opponent modeling and Tit-for-Tat reciprocity. ASTRA operates in three stages: (1) interpreting counterpart behavior, (2) optimizing counteroffers via a tool-integrated action with a linear programming (LP) solver, and (3) selecting offers based on strategy assessment and the partner{'}s acceptance probability. Through simulations and human evaluations, our agent effectively adapts to an opponent{'}s shifting stance and achieves favorable outcomes through enhanced adaptability and strategic reasoning. Beyond enhancing negotiation performance, it also serves as a powerful coaching tool, offering interpretable strategic feedback and optimal offer recommendations beyond human bounded rationality, with its potential further validated through human evaluation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kwon-etal-2025-astra">
<titleInfo>
<title>ASTRA: A Negotiation Agent with Adaptive and Strategic Reasoning via Tool-integrated Action for Dynamic Offer Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deuksin</namePart>
<namePart type="family">Kwon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiwon</namePart>
<namePart type="family">Hae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emma</namePart>
<namePart type="family">Clift</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Shamsoddini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Gratch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gale</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Negotiation requires dynamically balancing self-interest and cooperation within the flow of conversation to maximize one’s own utility. Yet, existing agents struggle due to bounded rationality in human data, low adaptability to counterpart behavior, and limited strategic reasoning. To address this, we introduce principle-driven negotiation agents, powered by ASTRA, a novel framework for turn-level offer optimization grounded in two core principles: opponent modeling and Tit-for-Tat reciprocity. ASTRA operates in three stages: (1) interpreting counterpart behavior, (2) optimizing counteroffers via a tool-integrated action with a linear programming (LP) solver, and (3) selecting offers based on strategy assessment and the partner’s acceptance probability. Through simulations and human evaluations, our agent effectively adapts to an opponent’s shifting stance and achieves favorable outcomes through enhanced adaptability and strategic reasoning. Beyond enhancing negotiation performance, it also serves as a powerful coaching tool, offering interpretable strategic feedback and optimal offer recommendations beyond human bounded rationality, with its potential further validated through human evaluation.</abstract>
<identifier type="citekey">kwon-etal-2025-astra</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.821/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>16228</start>
<end>16249</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ASTRA: A Negotiation Agent with Adaptive and Strategic Reasoning via Tool-integrated Action for Dynamic Offer Optimization
%A Kwon, Deuksin
%A Hae, Jiwon
%A Clift, Emma
%A Shamsoddini, Daniel
%A Gratch, Jonathan
%A Lucas, Gale
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F kwon-etal-2025-astra
%X Negotiation requires dynamically balancing self-interest and cooperation within the flow of conversation to maximize one’s own utility. Yet, existing agents struggle due to bounded rationality in human data, low adaptability to counterpart behavior, and limited strategic reasoning. To address this, we introduce principle-driven negotiation agents, powered by ASTRA, a novel framework for turn-level offer optimization grounded in two core principles: opponent modeling and Tit-for-Tat reciprocity. ASTRA operates in three stages: (1) interpreting counterpart behavior, (2) optimizing counteroffers via a tool-integrated action with a linear programming (LP) solver, and (3) selecting offers based on strategy assessment and the partner’s acceptance probability. Through simulations and human evaluations, our agent effectively adapts to an opponent’s shifting stance and achieves favorable outcomes through enhanced adaptability and strategic reasoning. Beyond enhancing negotiation performance, it also serves as a powerful coaching tool, offering interpretable strategic feedback and optimal offer recommendations beyond human bounded rationality, with its potential further validated through human evaluation.
%U https://aclanthology.org/2025.emnlp-main.821/
%P 16228-16249
Markdown (Informal)
[ASTRA: A Negotiation Agent with Adaptive and Strategic Reasoning via Tool-integrated Action for Dynamic Offer Optimization](https://aclanthology.org/2025.emnlp-main.821/) (Kwon et al., EMNLP 2025)
ACL