@inproceedings{bui-etal-2025-kg,
title = "{KG}-{CQR}: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval",
author = "Bui, Chi Minh and
Thieu, Ngoc Mai and
Van Nguyen, Vinh and
Jung, Jason J. and
Bui, Khac-Hoai Nam",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.824/",
pages = "16292--16309",
ISBN = "979-8-89176-332-6",
abstract = "The integration of knowledge graphs (KGs) with large language models (LLMs) offers significant potential to enhance the retrieval stage in retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching complex input queries with contextual representations derived from a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on the RAGBench and MultiHop-RAG datasets demonstrate that KG-CQR outperforms strong baselines, achieving improvements of up to 4{--}6{\%} in mAP and approximately 2{--}3{\%} in Recall@25. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance outperforms the existing baseline in terms of retrieval effectiveness."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bui-etal-2025-kg">
<titleInfo>
<title>KG-CQR: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chi</namePart>
<namePart type="given">Minh</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Mai</namePart>
<namePart type="family">Thieu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinh</namePart>
<namePart type="family">Van Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Jung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khac-Hoai</namePart>
<namePart type="given">Nam</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>The integration of knowledge graphs (KGs) with large language models (LLMs) offers significant potential to enhance the retrieval stage in retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching complex input queries with contextual representations derived from a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on the RAGBench and MultiHop-RAG datasets demonstrate that KG-CQR outperforms strong baselines, achieving improvements of up to 4–6% in mAP and approximately 2–3% in Recall@25. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance outperforms the existing baseline in terms of retrieval effectiveness.</abstract>
<identifier type="citekey">bui-etal-2025-kg</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.824/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>16292</start>
<end>16309</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KG-CQR: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval
%A Bui, Chi Minh
%A Thieu, Ngoc Mai
%A Van Nguyen, Vinh
%A Jung, Jason J.
%A Bui, Khac-Hoai Nam
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F bui-etal-2025-kg
%X The integration of knowledge graphs (KGs) with large language models (LLMs) offers significant potential to enhance the retrieval stage in retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching complex input queries with contextual representations derived from a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on the RAGBench and MultiHop-RAG datasets demonstrate that KG-CQR outperforms strong baselines, achieving improvements of up to 4–6% in mAP and approximately 2–3% in Recall@25. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance outperforms the existing baseline in terms of retrieval effectiveness.
%U https://aclanthology.org/2025.emnlp-main.824/
%P 16292-16309
Markdown (Informal)
[KG-CQR: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval](https://aclanthology.org/2025.emnlp-main.824/) (Bui et al., EMNLP 2025)
ACL