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Abstract

This paper introduces an algorithm to select
demonstration examples for in-context learn-
ing of a query set. Given a set of n examples,
how can we quickly select k out of n to best
serve as the conditioning for downstream in-
ference? This problem has broad applications
in prompt tuning and chain-of-thought reason-
ing. Since model weights remain fixed during
in-context learning, previous work has sought
to design methods based on the similarity of
token embeddings. This work proposes a new
approach based on gradients of the output taken
in the input embedding space. Our approach
estimates model outputs through a first-order
approximation using the gradients. Then, we
apply this estimation to multiple randomly sam-
pled subsets. Finally, we aggregate the sampled
subset outcomes to form an influence score for
each demonstration, and select k most relevant
examples. This procedure only requires pre-
computing model outputs and gradients once,
resulting in a linear-time algorithm relative to
model and training set sizes. Extensive experi-
ments across various models and datasets vali-
date the efficiency of our approach. We show
that the gradient estimation procedure yields
approximations of full inference with less than
1% error across six datasets. This allows us to
scale up subset selection that would otherwise
run full inference by up to 37.7× on models
with up to 34 billion parameters, and outper-
form existing selection methods based on input
embeddings by 11% on average.

1 Introduction

Prompt-based learning has emerged as a paradigm
for solving and generating natural language tasks

*Equal Contribution. Email correspondence can be di-
rected to all authors at {zhang.zini, zhang.zhens, li.dongyu,
ho.zhang}@northeastern.edu, wangluxy@umich.edu, and
jdy@ece.neu.edu.

using large language models (LLMs). In general,
prompt tuning helps adjust input prompts for a pre-
trained LLM (Liu et al., 2023; Wang et al., 2022),
allowing models to adapt to new tasks by condi-
tioning on carefully chosen prompts at inference
time, rather than undergoing full fine-tuning. The
capability of in-context learning (ICL) has been
discovered in GPT-3 models, where LLMs learn
to make predictions from a few examples (Brown
et al., 2020), and can be theoretically fleshed out in
simple function classes (Garg et al., 2022). In prac-
tice, in-context learning is sensitive to the examples
in the prompt (Min et al., 2022). Small changes in
the demonstration examples can lead to different
outcomes (see, e.g., Albalak et al. (2024) for a re-
cent survey). In this paper, we study the problem
of selecting a subset of demonstration examples
for in-context learning of a query set, focusing on
the efficiency of the selection procedure.

Demonstration selection has many applications.
One example is chain-of-thought prompting, where
models are guided by a few reasoning demonstra-
tions before solving new problems. Another sce-
nario is long-context learning, where LLMs pro-
cess hundreds of demonstrations in a single prompt.
As performance gains can diminish with increas-
ing context length (Bertsch et al., 2024), careful
selection is critical. Finally, in-context learning is
related to earlier literature on language inference
(Roth and Yih, 2004), but the mechanism of re-
trieving information from LLMs remains poorly
understood (Garg et al., 2022; He et al., 2022).

Existing works have sought to leverage input
embeddings to select the most relevant demonstra-
tions for in-context learning. For instance, one
could select the most similar demonstrations based
on their input embeddings (Liu et al., 2022). While
this similarity-based selection can identify simi-
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Figure 1: Given a set of demonstrations, we design a linear-time demonstration selection algorithm to construct
prompts for in-context learning of a query set. Stage 1: First, pre-compute functional outputs and gradients (with
respect to the embedding vector) on the entire training set. Stage 2: Second, apply a first-order approximation
to estimate the model outputs on a list of m random subsets S1, S2, . . . , Sm. This approximation is computed
based on the model outputs and the gradients computed during Stage 1. Let ĥ(S1), ĥ(S2), . . . , ĥ(Sm) denote the
estimated results, corresponding to the loss values of evaluating fW with each subset as the prompt conditioning.
Stage 3: Third, compute an influence score si for each demonstration example based on the estimated ĥ, for
i = 1, 2, . . . , nDemo. Specifically, si can be thought of as the importance score for the i-th demonstration example
applied to the query set. Then, select a subset of k out of n demonstrations via a threshold λ on the scores.

lar examples to the query, it overlooks the model
output conditioned on the demonstration labels
(Peng et al., 2024). Moreover, it treats each exam-
ple independently, even though in-context learn-
ing performance can depend on the interaction be-
tween multiple prompt examples. To identify such
subset combinations, one might consider subset
selection methods that evaluate model losses di-
rectly. For n demonstrations, evaluating all

(
n
k

)

subsets is infeasible. Stepwise selection methods,
such as forward selection, reduce the cost to O(kn)
by iteratively adding examples that yield the low-
est loss; however, this remains costly for large n.
Another option is random ensemble selection (Li
et al., 2023a,b), which averages model losses over
O(n log n) randomly sampled subsets, again in-
curring high inference cost. In summary, existing
methods rely solely on input embedding similari-
ties or suffer from high computation cost.

This work proposes a scalable prompt selection
method that utilizes the gradients of the model
output with respect to the input embeddings to effi-
ciently estimate model losses. Gradients have been
used as features for computing model influence
functions for data attribution (Li et al., 2024a,b).
However, existing methods that use gradients to
select data involve modifying model parameters
(Li et al., 2025), rendering them unsuitable for
ICL, where weights do not change. Let fW de-

note the output of an LLM. Let ϕ(S, x) denote the
embedding of a prompt S followed by a query in-
put x. Our main observation is to use gradients
of fW (ϕ(S, x)) taken with respect to ϕ(S, x), and
apply a first-order Taylor expansion to fW in the
input embedding space. In particular, we estimate
the model output for each training set query using
a gradient-based estimation, which we also empiri-
cally verify to hold with an error of less than 1%
across seven LLMs (see Table 2). With this estima-
tion, we then sample m random subsets from the
demonstration examples, and estimate their loss
values without actually running model inference
at all. Finally, we aggregate the loss values from
random subsets to form an influence score for ev-
ery demonstration, and select k examples with the
most relevant scores. Importantly, this procedure
only requires computing the output and the gradi-
ent of every candidate example in the embedding
space once at fW , leading to a computation time of
3T , where T is the runtime for one forward pass on
the training set, plus O(n log n) during inference,
where n is the number of demonstration examples.
In particular, T is much larger than the runtime
for computing the gradients of the demonstration
examples, resulting in a linear running time. See
Figure 1 for an illustration of our approach.

We extensively evaluate the efficiency and ac-
curacy of our approach on LLMs across three sen-

2

16472



Table 1: Runtime comparison between our algorithms
and standard subset selection methods for demonstra-
tion selection. Here, T represents the time cost of run-
ning one forward pass on a model with the training set,
k denotes the length of the selected prompts, and n
represents the number of demonstrations. Our approach
computes model outputs with one forward pass of time
T and input gradients with time 2T , plus an overhead
cost of O(n log n), which is negligible relative to T .

Approach Runtime

Forward Stepwise Selection nkT
Random Ensemble Selection O

(
n(log n)T

)

Ours (Algorithm 3) ≈ 3kT
Ours (Algorithm 2) ≈ 3T

timent classification datasets and three math rea-
soning tasks. Our approach achieves up to 37.7×
speed-up compared to conducting subset selection
with full-model inference, such as forward selec-
tion and random ensemble selection, while yield-
ing an approximation error of less than 1%. For
in-context learning evaluations on the six datasets,
our approach outperforms the strongest baseline
of top-k followed by loss-based selection (Peng
et al., 2024) by 11% on average, while using 49%
less computation cost. In long context evaluations
where k = 150, our approach matches the per-
formance of existing baselines with 30× shorter
context length.

In summary, the contributions of this paper in-
clude: i) Introducing a gradient estimation pro-
cedure to scale up inference and empirically vali-
date the accuracy of first-order approximations in
input embedding spaces. ii) Designing a linear-
time demonstration selection algorithm based on
random ensemble aggregation. See Table 1 for a
detailed runtime comparison. iii) Extensive experi-
ments validating the efficiency of gradient estima-
tion for model inference and demonstration selec-
tion. We provide the code to replicate these find-
ings at https://github.com/VirtuosoResearch/ICL-
GradSel.

2 Preliminaries

We consider the problem of solving a downstream
task through in-context learning (ICL). During ICL,
the prompt given to a language model appears in
the form of (x1, y1, . . . , xk, yk, xquery). The model

is asked to provide an answer to the query xquery,
based on the preceding k demonstration examples.
In general, suppose we have access to a set of
nDemo demonstration examples, denoted by SDemo,
including (xDemo

i , yDemo
i ), for i = 1, . . . , nDemo.

At training time, we have a set of nTrain training ex-
amples, denoted as STrain = {(xTrain

i , yTrain
i )}nTrain

i=1 .
Since the demonstration examples are not always
helpful at training time (Min et al., 2022), an im-
portant consideration is to select a subset S out of
SDemo, and use this subset as the prompt condition-
ing instead of the entire set. More formally, let
fW denote a pretrained language model and let ℓ
denote a loss function. The input to fW includes
a prompt conditioning sequence S, followed by
a query example xquery from the training set. In
practice, an embedding function, denoted as ϕ, is
used to encode the prompt sequence along with the
query example to the language model, leading to
the training objective of:

h(S) =
1

nTrain

nTrain∑

i=1

ℓ
(
fW (ϕ(S, xi)), yi

)
.

Our goal is to select a subset S ⊆ SDemo that mini-
mizes the above objective. After selecting a set of
demonstrations, we evaluate the test performance
on a separate test set.

In general, the number of all possible subsets
of demonstration examples is exponential. Enu-
merating through all possible subsets thus requires
performing inference through fW on every sub-
set. How can we scale up the inference proce-
dure for faster demonstration selection? Suppose
there is a list of subsets S1, . . . , Sm ⊆ SDemo, how
fast can we estimate h(S1), . . . , h(Sm)? To give
several examples of subset selection, suppose we
use greedy selection. The subset selection proce-
dure would start from the empty set, then include
all the singleton sets, then a single demonstration
combined with another demonstration, and so on.
Another example would be to take random sub-
sets out of SDemo, and then use the outcome from
the random subsets to form an influence score for
every demonstration example (Li et al., 2024b,
2025). Even if we were to run inference to com-
pute h(S1), . . . , h(Sm), it would still be slow if
the size of fW is very large. Therefore, we ask
the following question: Is it possible to estimate

3
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the model outputs accurately without having to run
through full inference on all the subsets?

3 Scaling Up Inference via Estimation

In this section, we introduce a new algorithm for
estimating model inference outcomes without re-
quiring repeated inference on multiple subsets. The
key idea is to estimate fW based on a first-order
approximation property. Consider the model out-
put of a prompt subset S on an input x, denoted as
fW (ϕ(S, x)). Given an anchor prompt S0, the first-
order approximation of fW around the embedding
vector ϕ(S0, x) is given by:

fW (ϕ(S, x)) = fW (ϕ(S0, x))+ (1)

⟨∇ϕfW (ϕ(S0, x)), ϕ(S, x)− ϕ(S0, x)⟩+ ϵS,x,

where ∇ϕ denotes the gradient of fW with respect
to the input embedding ϕ and ϵS,x denotes the ap-
proximation error. As a remark, we add padding
tokens to the right of the prompts to ensure that all
the prompts have the same length.
First-order approximation is accurate for ICL.
We find that ϵS,x remains small for a wide range
of LLMs and datasets. We evaluate ϵS,x across
seven LLMs with 1 billion up to 34 billion pa-
rameters, evaluated on the SST-2 dataset from the
GLUE benchmark (Wang et al., 2019). We ran-
domly sample a reference prompt of size k = 50
and evaluate equation (1) for other randomly sam-
pled prompts with k = 50. We compute ϵS,x and
report the relative error

(
ϵS

fW (ϕ(S,x))

)2, averaged
over the training set STrain. Here, fW refers to the
model output; For binary classification, it refers to
the value of the logit function, which is a scalar.
For multi-class classification, one would instead
compute the output and the approximation error at
each label position. We normalize the error with
respect to the norm of the embedding vector, i.e.,
∥ϕ(S,x)−ϕ(S0,x)∥

∥ϕ(S0,x)∥ , as shown in the leftmost column
of Table 2. Similar results are observed on other
datasets and are described in detail in Table 5, Ap-
pendix A.2.

The results are shown in Table 2. We find that
the estimation error remains less than 1%. Addi-
tionally, we find that the model with 34 billion
parameters yields the smallest error, achieving less
than 0.3%. These results suggest that equation (1)
delivers an accurate approximation for ICL.

Table 2: Relative approximation error of ϵS,x, tested
on several datasets with language models of up to 34
billion parameters.

Distance DeepSeek-7B Llama-13B CodeLlama-34B

15%− 20% 0.21±0.04% 0.06±0.00% 0.06±0.01%
20%− 25% 0.30±0.05% 0.08±0.02% 0.06±0.01%
25%− 30% 0.51±0.04% 0.09±0.01% 0.08±0.02%
30%− 35% 0.53±0.07% 0.28±0.03% 0.13±0.03%
35%− 40% 1.40±0.20% 0.37±0.03% 0.30±0.03%

Next, we describe the design of the estimation
algorithm. Given a reference prompt S0, we apply
equation (1) to every Si, for i = 1, 2, . . . ,m. In or-
der to enable this approximation, we pre-compute
the outputs at the reference prompt on the training
set, as well as the gradients at the reference prompt,
for every training example in STrain, taken with re-
spect to the embedding function ϕ. In the case that
k is particularly large, so that the dimension of ϕ
becomes very high, we can use random projection
to reduce the dimension of the gradients down to
a few hundred, which provably preserves the Eu-
clidean geometry between the gradient vectors. By
the Johnson-Lindenstrauss lemma, random projec-
tion can provably preserve the Euclidean distance
between the gradient vectors after the projection
(Johnson and Lindenstrauss, 1984). See the com-
plete statement in Appendix A.3. This estimation
procedure incurs less than 30% increase in mem-
ory usage compared to standard model inference.
The overall procedure is described in Algorithm 1.

A case study of linear functions. We illustrate
the above approximation with an example of learn-
ing linear functions with transformer models (Garg
et al., 2022). We use this setting to evaluate the
accuracy of equation (1) for ICL of linear func-
tions. Suppose that both the in-context exam-
ple and query example are generated as yi =〈
β(j), xi

〉
+ ϵi, where the input vector xi is ran-

domly sampled from N (0, Idd) with d = 20. The
coefficient vector β(j) is randomly drawn from a fi-
nite set {β(1), β(2), · · · , β(C)} with C < d, mean-
ing that different in-context examples may have
different coefficients. We consider two settings for
the noise term ϵi: linear regression with ϵi = 0 for
all i, or noisy linear regression with ϵi ∼ N (0, 1).

Figure 2a shows that in both settings, ICL-
GRADEX can accurately estimate the true out-

4

16474



Algorithm 1 In-Context Learning via Gradient
Estimation (ICL-GRADEX)
Input: An anchor set S0 ⊆ SDemo; m subsets
S1, S2, . . . , Sm ⊆ SDemo

Output: Estimated inference results for {Si}mi=1

/* Stage 1: Pre-compute */

1: P ⊆ Rp×d ← Isotropic Gaussian ∼ N (0, 1)
2: for i = 1, 2, . . . , nTrain do
3: fW (ϕ(S0, x

Train
i ))←Model output

4: ∇ϕfW (ϕ(S0, x
Train
i ))← Gradient over

the embedding space ϕ
5: g̃i ← P⊤∇ϕfW (ϕ(S0, x

Train
i ))

6: end for
/* Stage 2: Inference */

1: for j = 1, 2, . . . ,m do
2: for i = 1, 2, . . . , nTrain do
3: δi,j ← ϕ(Sj , x

Train
i )− ϕ(S0, x

Train
i )

4: δ̃i,j ← P⊤δi,j
5: f̂i,j ← fW (ϕ(S0, x

Train
i )) +

〈
g̃i, δ̃i,j

〉

6: ĥ(Sj)← 1
nTrain

∑nTrain

i=1 ℓ(f̂i,j , y
Train
i )

7: end for
8: end for
9: return ĥ(S1), ĥ(S2), . . . , ĥ(Sm)

comes of ICL. In particular, as k increases, the
trained transformer learns the linear function cor-
rectly, and the residual sum of squares (RSS) be-
tween the estimated scores and the true scores grad-
ually decreases to near zero. Recall that d = 20.
We thus plot from k = d onward because this is
the minimum number of samples required to solve
a system of linear equations. When k < d, the
trained transformer is unable to fully determine the
linear function. (See Figure 2, Garg et al. (2022)).

Extension to nonlinear functions. The same ap-
proach is applicable to more complex, non-linear
function classes. We extend the case study to
two-layer ReLU neural networks. ICL-GRADEX

achieves an estimation error of 4% and outper-
forms the top-k and random-k baselines by 34%.

4 Efficient Demonstration Selection

We now describe our design of fast demonstration
selection methods using a first-order approxima-
tion technique. The first, called ICL-GRADRE,
applies ICL-GRADEX to the random ensemble,
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Figure 2: An illustration of our approach for in-context
learning of linear functions, as we vary the number of
in-context examples k. Figure 2a: ICL-GRADEX in-
curs low approximation error relative to full inference,
for both linear regression and noisy linear regression.
Figure 2b: With ICL-GRADSEL, the selected demon-
strations follow the same linear function β, achieving
lower error than top-k and random-k selections.

which is inspired by the literature on influence
functions (Li et al., 2023b) and the work of task
affinity grouping (Fifty et al., 2021; Li et al., 2025).
We draw m random subsets from {1, 2, . . . , n},
each of fixed size k. Then, we use ICL-GRADEX

to estimate ĥ(S) for each of the subsets and com-
pute a score for a demonstration θi as the average
of ĥ(S) over subsets S that include si. Then, we
choose a subset of size k with the lowest scores.

To estimate each subset’s inference loss, we first
sample α anchor subsets of size k, then apply ICL-
GRADEX to estimate ĥ(S) from the anchor subset
for each subset Sj , for j = 1, 2, . . . ,m. Consider-
ing the robustness of this random selection process,
we observe that even when the average distance
is around 40%, the approximation error remains
below 1.5%, as shown in Table 2. To obtain better
results, we use the average estimates from the α
anchor subsets. Our ablation studies confirm that
α is typically a small constant within 10. On the
SST-2 dataset, setting α to over 5 is sufficient for
convergence. The complete procedure is described
in Algorithm 2.

Next, we illustrate the algorithm in the case
of linear functions. We sample 3, 000 data
points from three linear function of different
β(1), β(2), β(3) in R20 as the demonstration set,
and sample 100 data points from the linear func-
tion of β(1) as the training query set. Then, we
apply our approach to select a subset of k from
the demonstration set to construct the prompt for
ICL. We compare ICL-GRADRE with top-k selec-
tion, which chooses demonstrations based on in-

5
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Algorithm 2 In-Context Learning via Gradient-
based Random Ensemble (ICL-GRADRE)
Input: Query set STrain; Demonstration set SDemo

Require: Pretrained model fW ; Projection
dimension d; Number of subsets m; Subset size k;
Number of anchor prompts α
Output: Selected subset S ⊆ SDemo of size k

1: S1, S2, . . . , Sm ← Sample m random subsets
each of size k from SDemo

2: {A(i)}αi=1 ← Randomly choose α anchor
subsets from S1, S2, . . . , Sm

3: {ĥ(S(i)
j )}α,mi=1,j=1 ←

ICL-GRADEX({A(i)}αi=1, {Sj}mj=1)

4: for q = 1, 2, . . . , nDemo do
5: sq ← 1

α

∑α
i=1 Avg

({
ĥ(S

(i)
j ) | q ∈ Sj

})

6: end for
7: Sk ⊆ SDemo ← k demonstrations with the

lowest-k scores ranked in s1, s2, . . . , snDemo

8: return Sk

put embedding similarity to the training query set,
and random-k, which randomly samples k demon-
strations. The results in Figure 2b show that our
approach finds in-context examples with the same
β(1) out of the demonstration set, whereas top-k
and random-k selections are sensitive to different
values of k. To demonstrate the robustness of the
random ensemble method, we calculate the scores
of good examples (those following the same linear
model) versus those drawn from different linear
models, while varying the number of subsets. Our
results indicate that the scores for in-distribution
examples are consistently lower than those for out-
of-distribution examples (See Appendix B.3).

Besides random ensembles, our estimation ap-
proach can also be instantiated to accelerate other
subset selection methods. One, ICL-GRADFS, im-
plements the classical forward selection procedure.
At each step, we use ICL-GRADEX to all the sub-
sets that are encountered during the search step.
Then, based on the estimated results, we select a
demonstration example that leads to the smallest
(estimated) loss and add that to the chosen subset.
This procedure continues until we have selected k
demonstrations. The other, named ICL-GRADCE,
uses ICL-GRADEX to accelerate a cross-entropy
loss-based selection. The detailed procedure of
these two algorithms is deferred to Appendix A.2.

5 Experiments

We now evaluate ICL-GRADEX and ICL-
GRADRE across various LLMs and datasets. The
evaluation focuses on answering the following
questions. First, how accurate are gradient esti-
mations as compared to full model inference re-
sults? And how much computation cost does it
save compared to running an otherwise accurate
subset selection procedure with full model infer-
ence? Second, in addition to the estimated results,
how effective is the selected demonstration set for
in-context learning?

Our experiments show that, across a wide range
of LLMs (such as Llama, OPT, DeepSeek, and
Qwen), ICL-GRADEX can estimate model infer-
ence outcomes within 1% error, for LLMs ranging
from 1 billion up to 34 billion parameters. Cru-
cially, this estimation allows us to reduce the com-
putation cost of subset selection by up to 37.7×.
Applied to in-context learning evaluations across
six datasets that include both sentence classifica-
tion and math reasoning tasks, ICL-GRADRE im-
proves the test F1 score by 11% on average. For
long-context settings where k = 150, our selection
matches the performance of top-k and random-k
selection with 30× less context length.

5.1 Experimental Setup
Datasets and models. We evaluate our algorithm
on sentiment classification and reasoning tasks.
For sentiment classification, we use the Poem Sen-
timent, SST-2, and CR datasets. For reasoning, we
include edge existence from the GraphQA bench-
mark, modular addition, and coin flip tasks. We
use pretrained LLMs including Llama, DeepSeek,
and Qwen, covering model sizes ranging from 1 to
34 billion. The sources of the datasets and models
are described in Appendix B.1.
Baselines. We first compare our methods to subset
selection methods, including forward selection and
random ensemble. Second, we consider existing
baselines based on different measures to rank the
demonstrations. These include selection based on
probabilistic relevance rankings (BM25), embed-
ding similarities (top-k) (Liu et al., 2022), con-
ditional entropy (top-k + CE) (Peng et al., 2024),
dynamic uncertainty ranking (UR) (Yu et al., 2025),
and BRIDGE (Wan et al., 2025). We also report
the results from random selection with a fixed k.

6
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Implementations. For ICL-GRADFS, we apply the
estimation method at each iteration. We use the
prompt selected in the previous iteration, adding
a new random demonstration as the anchor. We
vary the step of estimation t from 1 to the length
of the demonstrations. For ICL-GRADRE, we
estimate the model inference loss on m subsets of
size k. Among them, we select α subsets as anchor
subsets, for which we conduct full inference to
estimate the remaining results. We use m between
500 to 2, 000, subset size k between 3 to 8, and
the number of anchors between 1 to 10. In all our
methods, we project the gradients to d = 400.

5.2 Results on Estimation and Efficiency

We evaluate the accelerated version of our ap-
proach against full inference in terms of both ap-
proximation accuracy and computational cost. For
measuring approximation accuracy, we report the
relative error between the estimated loss ĥ(S) and

the true loss h(S) as 1
m

∑m
i=1

(h(S)−ĥ(S))2

(h(S))2
. To

measure computational cost, we count the total
number of floating-point operations (FLOPs) per-
formed on an Nvidia A6000 GPU card. We report
these metrics for forward selection, random ensem-
ble, and loss-based selection (top-k+CE), relative
to the results from using ICL-GRADEX.

As shown in Table 3, on both SST-2 and Coin-
Flip datasets, our accelerated version yields accu-
rate approximations that are within 1% error of
model inference results, for LLMs with up to 34
billion parameters. The speed-up ratio remains
consistent across different LLMs for each dataset,
which all use the same number of forward passes.

Next, we report the computation cost. For
DeepSeek-7B on the Coin-Flip dataset, ICL-
GRADFS takes 1.6 GPU hours, achieving a 37.1×
reduction compared to forward selection with full
inference. ICL-GRADRE takes just 0.1 GPU
hours, offering a 19.7× speed-up. ICL-GRADCE
runs in 0.8 GPU hours, reducing cost by 17.3×.
Again, these speed-ups are consistent across mod-
els, as they primarily depend on the reduced num-
ber of forward passes, which remains fixed per
dataset. The number of FLOPs is reported in Ta-
ble 7 and Appendix B.2.

Table 3: Relative error between estimated and actual
inference results, measured on two datasets. The speed-
up rate is measured as the ratio of FLOPs between full
inference and our estimation.

Coin-Flip DeepSeek-7B CodeLlama-34B Speedup

ICL-GRADFS 0.17±0.0% 0.52±0.0% 37.7×
ICL-GRADRE 0.08±0.1% 0.07±0.0% 19.7×
ICL-GRADCE 0.58±0.0% 0.46±0.0% 17.3×
SST-2 DeepSeek-7B CodeLlama-34B Speedup

ICL-GRADFS 0.20±0.1% 0.43±0.1% 19.0×
ICL-GRADRE 0.18±0.0% 0.36±0.0% 10.8×
ICL-GRADCE 0.80±0.0% 0.79±0.0% 6.7×
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Figure 3: Trade-off between the number of FLOPs
and test error rates, measured on two datasets with
DeepSeek-7B models.

5.3 Results on Demonstration Selection

Next, we report the results of demonstration selec-
tion for in-context learning. Table 4 shows the com-
parative results across six datasets, while Figure 3
illustrates the computation vs. performance trade-
off. See also Table 7 for the number of FLOPs
used to represent this figure.

First, compared to baselines that rank demon-
strations by input relevance or similarity (e.g.,
BM25, top-k, and uncertainty ranking), both ICL-
GRADFS and ICL-GRADRE can outperform them
by an average of 8% and 11%, while also using
40% and 49% less computation, respectively.

For top-k+CE, which first reduces the demon-
stration set down to a reduced set, and then applies
cross-entropy to select the k prompts, our acceler-
ated version, ICL-GRADCE, achieves comparable
performance, while reducing computation by 88%.

Second, we report the memory cost of ICL-
GRADRE, corresponding to the results in Table 4.
For SST-2, CR, and Coin Flip, the memory cost is
11 GB. For Poem Sentiment, Edge Existence, and
Modular Addition, the memory cost is 13 GB.

Finally, compared with top-k and random-k for
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Table 4: We report the test F1 score (%) of in-context learning using the DeepSeek-7B model across six datasets.
We compare our approach with existing demonstration selection methods based on various ranking criteria. We
vary the number of in-context examples k from 3 to 8 and report the best performance result for each baseline. We
run each experiment with three random seeds to report the standard deviations.

Dataset Poem Sentiment SST-2 CR Edge Existence Modular Addition Coin Flip
Category Classification Classification Classification Graphs Math Math

Random-k 55.3±7.8 76.9±1.0 78.5±2.8 85.5±2.2 66.9±0.6 35.3±2.1

BM25 26.5±1.0 77.4±2.7 76.0±2.7 50.6±1.3 38.1±3.0 34.2±1.1

Top-k 26.3±1.1 80.6±2.1 88.8±0.9 83.5±0.1 52.2±4.2 37.1±2.5

UR 36.7±1.7 90.4±1.5 93.4±1.4 61.8±1.4 48.1±0.1 53.4±1.6

BRIDGE 26.8±1.1 81.0±1.3 94.9±0.6 86.1±2.5 61.0±3.5 74.1±2.3

Top-k + CE 44.0±0.0 77.2±3.5 90.7±1.9 87.6±2.3 67.5±2.7 50.1±0.0

ICL-GRADCE 43.3±0.7 75.9±2.0 90.5±2.7 87.6±2.5 64.1±2.2 47.6±1.5

ICL-GRADFS 74.1±0.0 94.2±0.7 95.7±1.0 87.6±2.8 73.0±0.0 60.6±0.0

ICL-GRADRE 76.6±0.3 91.6±1.8 97.0±1.3 89.6±0.6 80.1±1.3 75.2±3.7

k up to 150, we find that our approach matches top-
k when k = 150 (9000 tokens) with 10 in-context
examples (600 tokens). See illustration in Figure 4.
In this setting, our approach requires only 13 GB
of GPU memory, whereas top-k and random-k use
47 GB to achieve similar performance, all tested
on DeepSeek-7B. Our method also performs well
on other models, such as Llama-8B and Qwen-
7B. On the three reasoning tasks, ICL-GRADRE
outperforms the most competitive baseline by 22%
on average, while using 49% less computation.

Lastly, we note that ICL-GRADEX can adapt
to any ensemble method in principle. For exam-
ple, we can extend our approach to accelerate
BRIDGE (Wan et al., 2025), resulting in compa-
rable performance while reducing the number of
GPU hours by 80%.

5.4 Ablation Studies

Next, we describe the parameter choices of our
algorithms. We also extend our approach to handle
unlabeled demonstrations in Appendix B.4.

Random ensemble. ICL-GRADRE involves
three tunable hyperparameters: the number of sub-
sets m, subset size k, and projection dimension d.
We vary m from 500 to 2000 and find that scores
converge when m > 2× nDemo. We set k between
3 and 8. k is mostly 5, depending on the effective
number of demonstrations. For d, we vary it from
200 to 1000 and observe that values beyond 400
yield minimal gains, so we fix d = 400.

Forward selection. In ICL-GRADFS, each it-
eration uses the previously selected subset as the
anchor for gradient-based estimation. When the
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Figure 4: Comparing our approach with top-k and
random-k by varying k on two datasets using DeepSeek-
7B models. Here, k varies from 0 to 150.

subset is small, approximation errors can be high.
We vary the start step of estimation t. We find
that setting t > 3 yields the same performance as
running the forward selection fully.

Dimension reduction. The memory overhead of
our approach is similar to standard in-context infer-
ence, with extra storage from computing gradients
on input embeddings. In practice, this adds less
than 30% storage over standard model inference.
To achieve this result, we apply random projection
to reduce the dimension of the gradients, while
provably preserving accuracy. In our experiments,
we project the gradients from a dimension of 4, 096
times the sequence length (e.g., 128) down to 400,
and find that the gradient estimation yields an error
within 1% to the model outputs.

Anchor selection. We evaluate random anchor
selection on the SST-2 dataset. We vary the num-
ber of anchor prompts from 1 to 10 and find that
using 5 anchor prompts is sufficient to reduce the
approximation error of gradient estimation below
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1%. We also consider mean embedding selection,
in which anchor prompts are chosen based on their
embeddings being closest to the mean of all candi-
date embeddings. The results differ from randomly
selecting demonstrations by less than 2%.

6 Related Work

Language models have shown strong in-context
learning (ICL) capabilities, where they can adapt
to new tasks during inference by conditioning on a
few input-label pairs without requiring parameter
updates. Min et al. (2022) provide an empirical
analysis of several factors affecting ICL, includ-
ing label space, input distribution, and sequence
format. The effectiveness of ICL has been partly at-
tributed to parallel structures in pretraining corpora,
where phrase pairs follow similar templates within
the context window (Chen et al., 2024), which is
crucial in pretraining (Gururangan et al., 2020)).

Building on these insights, a growing line of
work has focused on improving demonstration se-
lection and usage. ADAPT (Ross and Andreas,
2024) introduces a framework in which a teacher
model diagnoses student misconceptions and adap-
tively selects demonstrations. Treating demon-
stration selection as a retrieval problem, Yu et al.
(2025) propose a reinforcement learning–based
ranking method that updates retrieval rankings us-
ing feedback from the LLM, enabling better perfor-
mance on long-tail samples. Wan et al. (2025) take
a different perspective by fitting a Gaussian process
regression model that maps subsets of demonstra-
tions to model losses. Another direction involves
ensemble-based strategies that combine multiple
subsets of demonstrations. Khalifa et al. (2023)
conduct inference separately on multiple subsets
and aggregate the predictions using weighted en-
sembles determined by input similarity. Similarly,
Huang et al. (2024) partition demonstrations into
groups and reweight output logits through a non-
gradient optimization procedure.

It is also worth noting earlier research on feature
selection in unsupervised learning, such as meth-
ods based on expectation–maximization and clus-
tering (Dy and Brodley, 2004). Recent work has ad-
vanced the theoretical understanding of in-context
learning (ICL). Zhang et al. (2024b) analyze trans-
formers with a single linear self-attention layer and
show that such models can in-context learn linear

functions. Wu et al. (2024) establish complex-
ity bounds for attaining Bayes-optimal ICL with
single-layer linear attention models. We refer read-
ers to the recent survey by Dong et al. (2022) for a
more comprehensive review of in-context learning.

The use of gradients for selection and data in-
fluence analysis has been extensively explored in
multitask learning. Recent theoretical work has
modeled information transfer in multi-task neural
networks (Wu et al., 2020), with precise character-
izations established in the linear regression setting
(Yang et al., 2025). Influence functions (Koh and
Liang, 2017) quantify the effect of perturbing in-
dividual training examples on model predictions.
PCGrad (Yu et al., 2020) mitigates destructive gra-
dient interference by projecting conflicting gradi-
ents in the shared parameter space.

Gradients have also been leveraged for attribu-
tion and task relationship modeling. Fifty et al.
(2021) propose task-affinity grouping, which con-
structs a task affinity matrix using gradient simi-
larity across tasks. Building on this idea, Li et al.
(2023b) introduce a surrogate modeling framework
that extrapolates value functions on subset combi-
nations to capture multi-task relationships. Follow-
up work by Li et al. (2023a) improves this frame-
work with ensemble methods and more accurate
task affinity computation, further extended by Li
et al. (2024b). More recently, Li et al. (2025) apply
this ensemble methodology to low-rank fine-tuning
of LLMs. Our work adds to this literature by em-
ploying gradients to approximate model inference,
enabling the development of a linear-time algo-
rithm. We further anticipate that this methodology
could scale to broader inference paradigms, includ-
ing LLM alignment (Huang et al., 2025).

7 Conclusion

We study the problem of demonstration selection
for in-context learning. Our key observation is that
the first-order approximations of model outputs
are highly accurate when the input embeddings
are close. Leveraging this, we propose an estima-
tion algorithm that uses first-order approximations
around an anchor prompt to efficiently estimate the
model outputs for all other prompts. We validate
our method on sentiment and reasoning tasks using
various language models, achieving higher accu-
racy with less computation for in-context learning.
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Limitations and Future Works

Our method selects in-context examples based
on estimated inference results within the training
distribution. However, its robustness in out-of-
distribution (OOD) scenarios remains unclear. Ad-
ditionally, more principled anchor selection strate-
gies, such as integrating with prior feature selec-
tion methods for unsupervised learning, can be
explored in future work. Our gradient-based ap-
proximation framework provides a flexible founda-
tion for such extensions, including the acceleration
of other prompt optimization methods.

Potential Risks

This paper studies data selection for prompt-tuning
language models. While language models may
have future societal impacts, due to the technical
focus of our work, we believe this paper raises
minimal such concerns or negative implications.
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A Algorithms

In this section, we elaborate on the algorithm de-
scription from Section 3.

A.1 Subset Selection
In this section, we give several examples of con-
ventional subset selection methods.

Example A.1 (Forward selection). Forward se-
lection iteratively selects a demonstration exam-
ple into the subset that leads to the smallest loss
at each iteration. It starts with an empty set
S1 = {}. Then, enumerate through all single-
ton sets, f({1}), . . . , f({n}), and pick the best
one. Suppose i1 is chosen, then iterate over
f({1, i1}), . . . , f(n, i1) except when i1 is repeated
and choose the best one. This procedure stops
when f(S) reaches its peak.

Example A.2 (Random ensemble). Random en-
semble has been a highly effective strategy for data
attribution (Li et al., 2025), which can be used for
subset selection. We draw m random subsets from
{1, 2, . . . , n}, each of fixed size α. Then, evaluate
f(S) for each of the subsets and compute a score
for a demonstration zi as the average of f(S) over
subsets S that include zi. The selection can be con-
ducted by choosing the demonstrations with the
lowest scores.

Example A.3 (Cross-entropy loss-based selection).
Existing work (Peng et al., 2024) has designed a
selection method that first reduces the search space
by retrieving K most similar demonstrations to the
test examples. This is achieved by selecting K
demonstrations whose embeddings have the least
distance to the embedding of the test query. Then,
enumerate to evaluate f(S) on each of K demon-
strations and select the k demonstrations with the
lowest losses.

When we construct the prompt condition within
ϕ(S, x), we use a random ordering of the demon-
strations in S, and we find that the ordering has a
negligible effect on the predictions. We use this
convention throughout the paper.

A.2 Complete Procedure
We now describe instantiations of our approach for
the above subset selection methods. In particular,
we provide the entire procedure for accelerating

Algorithm 3 In-Context Learning via Gradient-
based Forward Selection (ICL-GRADFS)
Input: Query set STrain; Demonstration set SDemo

Require: Model fW ; Embedding function ϕ(·);
Projection dimension d; Subset size α
Output: Selected subset Sk ⊆ SDemo of size k

1: S ← ∅
2: while |S| < k do
3: m← nDemo − |S|
4: {Sij = S ∪ {ij} | j = 1, . . . ,m} ← For

any ij-th element of SDemo not in S
5: S0 ← Randomly choose one anchor subset

from Si1 , Si2 , . . . , Sim

6: ĥ(Si1), ĥ(Si2), . . . ĥ(Sim) ← ICL-
GRADEX(S0; {Sij}mj=1)

7: ij⋆ ← argminmj=1{ĥ(Sij )}
8: S ← Sij⋆

9: end while
10: return S

Algorithm 4 In-Context Learning via Gradient
Estimation of Cross Entropy (ICL-GRADCE)
Input: Query set STrain; Demonstration set SDemo

Require: Model fW ; Embedding function ϕ(·);
Projection dimension d; Subset size α
Output: Selected subset Sk ⊆ SDemo of size k

1: S(K) ⊆ SDemo ← The K demonstrations
most similar relative to Average

(
{ϕ(xTrain

i )}
)

over the training set
2: S0 ∈ S(K) ← Randomly choose one sample
3: for i = 1, 2, . . . ,K do
4: {ĥ(Si)}Ki=1 ← ICL-GRADEX(S0;Si)
5: end for
6: Sk ← The k samples in S(K) that have the

lowest values of {ĥ(Si)}Ki=1

7: return Sk

forward selection in Algorithm 3 and loss-based
selection in Algorithm 4.

ICL-GRADFS adopts a forward selection strat-
egy, where at each step the method greedily selects
the next demonstration that leads to the lowest esti-
mated inference loss on the validation input. The
selection continues until k demonstrations are cho-
sen. This procedure aims to construct an effective
prompt by iteratively adding the most helpful ex-
amples based on the current context.
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Table 5: We report the RSS of the first-order approximation for the model inference output on the SST-2 dataset for
various models of 1 billion to 34 billion parameters. As shown in the table, the relative error is the order of 10−4 to
10−2, where the relative distance of input embeddings is from 15% to 40%. To obtain the distance range, we vary
the value of k from 2 to 50 and sample random combinations whose size falls within this range. We measure the
deviation in x and bucket the results. The MSE of the first-order approximation across different datasets and model
scales during inference. Each entry reports the average approximation error and its standard deviation, measured
with k = 4 in-context examples. The models are listed in ascending order of parameter size to facilitate comparison
across scales.

Relative Distance Llama-3.2-1B OPT-1.3B Llama-3.2-3B Llama-3.1-8B

15%− 20% 1.6±0.3 × 10−3 4.8±2.2 × 10−3 8.4±1.3 × 10−3 6.8±1.5 × 10−3

20%− 25% 2.1±0.1 × 10−3 5.7±0.8 × 10−3 9.2±0.9 × 10−3 1.9±0.4 × 10−2

25%− 30% 2.5±0.7 × 10−3 8.6±0.4 × 10−3 1.0±0.2 × 10−2 2.4±0.6 × 10−2

30%− 35% 6.9±0.3 × 10−3 1.1±0.1 × 10−2 1.2±0.1 × 10−2 4.6±0.7 × 10−2

35%− 40% 9.6±0.4 × 10−3 1.6±0.2 × 10−2 2.8±0.3 × 10−2 5.2±1.7 × 10−2

Language Model Poem-Sentiment Edge-Existence CR Modular-Addition

Llama-3.2-1B 3.7±0.1 × 10−3 8.9±0.7 × 10−4 1.8±0.3 × 10−2 6.1±1.6 × 10−3

OPT-1.3B 1.4±0.3 × 10−2 1.1±0.1 × 10−2 2.5±0.6 × 10−2 2.3±1.1 × 10−3

Llama-3.2-3B 1.7±0.7 × 10−3 6.1±0.2 × 10−3 3.3±1.0 × 10−3 3.5±1.0 × 10−3

DeepSeek-7B 2.8±0.9 × 10−3 1.6±0.2 × 10−3 1.7±0.9 × 10−2 3.2±0.1 × 10−3

Llama-3.1-8B 4.3±0.6 × 10−3 1.6±0.1 × 10−2 1.8±0.1 × 10−2 4.2±1.2 × 10−3

Llama-2-13B 1.0±0.6 × 10−3 1.4±0.0 × 10−3 1.6±0.4 × 10−4 8.3±1.6 × 10−3

CodeLlama-34B 4.9±2.9 × 10−4 6.4±1.0 × 10−4 1.0±0.2 × 10−3 1.6±0.2 × 10−3

ICL-GRADRE generates a large number of ran-
dom k-way demonstration combinations, then uses
inference to compute the loss of each combination.
Each sample is scored by averaging the losses of all
combinations that include it. Finally, the k samples
with the lowest average scores are selected. This
ensemble-based approach provides a robust esti-
mation by aggregating performance across many
contexts.

We use the Johnson–Lindenstrauss Lemma to
perform dimensionality reduction, with the de-
tailed formulation and implementation provided
in Appendix A.3. After projection, the dimension-
ality grows only logarithmically with the number
of data points and decreases with the square of
the allowable distortion. This lemma ensures that
the Euclidean distance between any two vectors is
approximately preserved with high probability.

As a remark, our method estimates model out-
puts through a first-order approximation in the in-
put embedding space. This idea can be further
extended to other inference procedures. Since the
gradient depends only on the reference prompt,
one may calibrate the estimation by adjusting the
combination weights at different positions. In par-
ticular, the weights can be modulated according to
the inner product between the gradient and the em-

bedding differences, enabling position-specific ad-
justments. Moreover, our method naturally applies
to the prompt engineering setting, where only a
single token changes in each inference. The devel-
opment of such extensions is left for future work.

A.3 Random Projection

We utilize the Johnson-Lindenstrauss Lemma to re-
duce the storage of gradients. Here we describe the
details of it. This result is used to project vectors
from high-dimensional Euclidean space into a low-
dimensional space, preserving distances between
points nearly perfectly.

Lemma A.4 (The Johnson-Lindenstrauss Lemma).
Let 0 < ε < 1, let X be a set of N points in Rn,
and let k ≥ C ε−2 logN, for some universal
constant C > 0. Then there exists a linear map
f : Rn → Rk such that for all u, v ∈ X ,

∣∣∥f(u)− f(v)∥2 − ∥u− v∥2
∣∣ ≤ ε∥u− v∥2.

Equivalently, the restriction f |X is (1 + ε)-bi-
Lipschitz. Moreover, the bound on k is asymp-
totically tight: there exist sets of N points that
require k = Ω

(
logN
ε2

)
, dimensions to preserve all

pairwise distances within a factor of (1± ε).
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Table 6: We report the relative residual sum of squares between f(S) and f̂(S) when running the subset selection
baselines, measured on the Coin-Flip dataset. To measure speedup, we report the speedup rate as the ratio of FLOPs
required to fully compute f(S) versus ICL-GRADSEL. The speedup remains consistent across different models on
the same dataset, as the reduced number of forward passes is constant for all models on the same dataset.

Coin-Flip Llama-3-1B Llama-3-3B Llama-3-8B Llama-2-13B Speedup

ICL-GRADFS 0.15±0.01% 0.51±0.03% 0.88±0.00% 0.62±0.01% 37.7×
ICL-GRADRE 0.17±0.01% 0.15±0.01% 0.37±0.02% 0.21±0.00% 19.7×
ICL-GRADCE 0.24±0.00% 0.25±0.01% 0.90±0.10% 0.68±0.01% 17.3×
SST-2 Llama-3-1B Llama-3-3B Llama-3-8B Llama-2-13B Speedup

ICL-GRADFS 0.12±0.07% 0.45±0.27% 0.39±0.04% 1.50±0.40% 19.0×
ICL-GRADRE 0.50±0.17% 0.42±0.12% 0.50±0.19% 0.40±0.19% 10.8×
ICL-GRADCE 0.93±0.11% 0.88±0.12% 1.30±0.40% 0.46±0.04% 6.7×

Dimension reduction of gradients. Suppose we
have N gradient vectors {gt}Nt=1 ⊂ Rd. To com-
press them, we generate a random projection ma-
trix Π ∈ Rk×d, where every Πij is drawn inde-
pendently from N (0, 1)/

√
k. That is, each entry

is sampled independently from a Gaussian dis-
tribution and scaled by 1/

√
k. For each gradi-

ent gt, we compute its compressed representation
g̃t = Πgt ∈ Rk. By Lemma A.4, with high prob-
ability, all pairwise distances and inner products
among {gt} are preserved up to (1± ε) after pro-
jection. Thus, storing g̃t instead of gt reduces
the memory cost from O(d) per gradient to O(k)
while maintaining the geometric relations needed
for downstream analysis.

Gradient estimation results. To further validate
the robustness of our first-order loss approxima-
tion method, we report the approximation error,
measured as the mean squared error (MSE) be-
tween estimated and actual inference losses. We
evaluate this across six datasets using a variety of
open-source language models ranging in size from
1 billion to 34 billion parameters. In particular, we
consider different datasets here, but we fix k = 4
instead. The results, shown in Table 6, remain
consistent with our findings. Overall, the error re-
mains consistently low, within the range of 10−3 to
10−2 across most tasks. Notably, there is no clear
upward trend in approximation error with increas-
ing model size. For example, CodeLLaMA-34B,
the largest model in our evaluation, still achieves
errors comparable to or even smaller than those
of smaller models on datasets such as GraphQA
and SST-2. Since we do the approximation on the
embedding space, the error may not strictly follow

scaling laws. This observation aligns with the trend
reported in Table 2, suggesting that larger models
do not affect the quality of our approximation.

B Omitted Experiments

In this section, we present additional details re-
garding the experiment setup, report supporting
results and analysis, and describe extensions of our
approach.

B.1 Detailed Setup

Datasets. Our datasets cover a diverse set of task
types, including linguistic tasks, algorithmic rea-
soning, arithmetic reasoning, and graph reasoning.

The Poem Sentiment dataset contains sentiment
annotations (positive, neutral, or negative) for lines
of poetry, supporting sentiment analysis in literary
contexts. The number of queries is 800.

The SST-2 dataset is a binary sentiment clas-
sification dataset composed of movie reviews la-
beled as either positive or negative from the GLUE
benchmark. The number of queries is 450.

The Customer Review (CR) dataset includes
product reviews annotated with binary sentiment
labels, designed to assess the model’s ability to gen-
eralize sentiment understanding across domains.
The number of queries is 450.

Modular addition is a math reasoning task where
models take a, b ∈ {0, ..., P−1} for a prime P and
predict their sum mod P . The number of queries
is 500.

The Edge Existence dataset from GraphQA is a
graph reasoning task in which the model is given
an undirected graph and must determine whether a
specific edge is present in this graph. The number

15

16485

https://huggingface.co/datasets/google-research-datasets/poem_sentiment
https://huggingface.co/datasets/nyu-mll/glue/viewer/sst2
https://huggingface.co/datasets/SetFit/CR
https://github.com/google-research/google-research/tree/master/graphqa


Table 7: Total number of floating-point operations (FLOPs) required during inference for different datasets using the
DeepSeek-LLM-7B and LLaMA-3.1-8B models. We report the results on six datasets with varied task categories.

DeepSeek-7B Poem Sentiment SST-2 CR Edge Existence Modular Addition Coin Flip

Forward Selection 1.1× 1016 2.8× 1015 2.8× 1015 3.0× 1016 8.7× 1015 2.5× 1016

Top-k 2.1× 1014 1.1× 1014 1.1× 1014 5.7× 1014 3.3× 1014 2.8× 1014

Top-k + CE 2.9× 1015 7.8× 1014 7.9× 1014 8.0× 1015 2.4× 1015 6.5× 1015

UR 2.0× 1015 5.1× 1014 5.2× 1014 5.7× 1015 1.6× 1015 4.8× 1015

ICL-GRADCE 2.5× 1014 1.2× 1014 1.2× 1014 6.9× 1014 3.6× 1014 3.8× 1014

ICL-GRADRE 4.2× 1013 1.1× 1013 1.1× 1013 1.2× 1014 3.3× 1013 9.8× 1013

ICL-GRADFS 3.8× 1014 1.5× 1014 1.5× 1014 1.0× 1015 4.6× 1014 6.7× 1014

Llama-3.1-8B Poem Sentiment SST-2 CR Edge Existence Modular Addition Coin Flip

Forward Selection 1.8× 1016 4.5× 1016 4.6× 1016 4.8× 1017 1.4× 1017 4.0× 1017

Top-k 3.4× 1014 1.7× 1014 1.7× 1014 9.2× 1014 5.3× 1014 4.5× 1014

Top-k + CE 4.6× 1015 1.2× 1015 1.3× 1015 1.3× 1016 3.9× 1015 1.0× 1016

UR 3.3× 1015 8.2× 1014 8.4× 1014 9.1× 1015 2.6× 1015 7.6× 1015

ICL-GRADCE 4.0× 1014 1.9× 1014 1.9× 1014 1.1× 1015 5.8× 1014 6.0× 1014

ICL-GRADRE 6.7× 1013 1.7× 1013 1.8× 1013 1.9× 1014 5.4× 1013 1.6× 1014

ICL-GRADFS 6.0× 1014 2.4× 1014 2.4× 1014 1.7× 1015 7.4× 1014 1.1× 1015

of queries is 799.
The Coin-Flip dataset is an arithmetic reason-

ing task where the model reads a natural language
description of a sequence of fair coin flips and
must predict the final outcome (heads or tails). The
number of queries is 869.

Models. In our experiments, we evaluate
a range of open-source language models with
varying scales and architectures. These in-
clude LLaMA-3.2-1B, OPT-1.3B, LLaMA-3.2-
3B, DeepSeek-LLM-7B, Qwen2.5-7B-Instruct,
Qwen3-8B, LLaMA-3.1-8B, LLaMA-2-13B, and
CodeLLaMA-34B. This diverse selection enables
us to evaluate the performance and scalability of
our methods across models of varying capacities,
training frameworks, and intended usage scenarios.

Baselines. We compare our algorithm to base-
lines including random-k, BM25, top-k, top-k +
CE, and UR. All these selection methods rely on in-
put features, which are extracted from the encoder
output of the models.

The random-k (Min et al., 2022) method ran-
domly selects k samples from the candidate set.
The top-k (Liu et al., 2022) method selects the
k most similar candidates based on feature sim-
ilarity, given a test input. We compute the co-
sine similarity in the top-k range between the last-
layer hidden representations of training queries
and demonstration examples, based on a spe-
cific model. The BM25 method utilizes a term-
frequency-based ranking function to retrieve the

top-k candidates whose input texts are most rele-
vant to the query, with a focus on lexical overlap
rather than embedding-level similarity. These three
baselines only make the selection based on the
input features, without considering the inference
result, which may not accurately measure sample
similarity. For example, in the reasoning datasets,
such as the coin flip, the sample can vary by one to-
ken in the input but have different labels. The top-k
+ CE (Peng et al., 2024) method follows a two-step
process. The first step is to filter k samples, and the
second step selects the sample that results in the
smallest output loss during inference. This struc-
tured approach ensures that the selection methods
effectively leverage feature representations for can-
didate retrieval. UR (Yu et al., 2025) applies BM25
to pre-select a candidate pool for each query. Then,
in the training phase, it repeatedly runs the lan-
guage model with 0 to k retrieved examples, and
assigns reward scores to each example based on
whether adding it improves or harms the model pre-
diction. In the inference phase, it again uses BM25
to filter candidates and ranks them based on the
reward scores learned during training, ultimately
selecting the top-k highest-scoring demonstration
examples. BRIDGE (Wan et al., 2025) proposes
selecting demonstration subsets by fitting a Gaus-
sian process regression model to the output of the
demonstration subsets.
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Table 8: We report the result using Snarks and Sports
Understanding dataset.

Algorithm Snarks Sports Understanding

Top-k 0.33 0.35
BRIDGE 0.50 0.48
ICL-GRADRE 0.53 0.52

B.2 Additional Experiment Results

In Table 7, we report the number of FLOPs for
each approach, corresponding to Table 3.

To evaluate the performance on reasoning tasks,
we further assess our approach on two reasoning
tasks: Snarks and Sports Understanding from the
BIG-Bench-Hard benchmark, and report the F1

score in Table 8. We find that the gradient-based
estimation yields a relative error of less than 1%
when the relative distance of the input embedding
is within 10%. When applied to demonstration
selection, our approach also leads to a 18.5% per-
formance increase compared to top-k. The results
show that applying our approach yields compara-
ble performance to BRIDGE while using only 20%
of GPU hours.

We also evaluate our approach with another
instruction-tuned model, Qwen-7B-Instruct. First,
we find that on this model, the gradient-based esti-
mation still yields relative error below 1% within
a 30% relative distance in the input embeddings
space. Additionally, we evaluate demonstration
selection using the models on SST-2 and modular
addition datasets. We report the results in Table 9.

Table 9: We report the result of ICL-GRADRE on SST-
2 and modular addition using Qwen-7B-Instruct model.

Datasets SST-2 Modular Addition

Random-k 0.87 0.68
Top-k 0.72 0.61
ICL-GRADRE 0.89 0.73

B.3 Additional Ablation Analysis

Number of anchor subsets in random ensemble. Re-
call that ICL-GRADRE pre-computes model infer-
ence losses on a few anchor subsets and estimates
losses for other prompts via first-order approxima-
tion. On the Edge Existence dataset, we vary the
number of anchor prompts from 1 to 10. We find
that 5 anchor prompts are sufficient to keep the

Table 10: We illustrate the results on the StrategyQA
dataset when the candidate data is duplicated three
times. For the top-k algorithm, a small number of re-
peated samples (k = 2) can improve performance, but
additional repetition (k = 3) reduces performance. Af-
ter the model has selected all repeated samples, choos-
ing a new, non-duplicate sample (k = 4) can once
again improve performance, even surpassing the per-
formance of the duplicated case when k = 2. On the
other hand, ICL-GRADSEL provides a better and stable
performance when k ≥ 2.

# Duplicates Top-k ICL-GRADSEL

k = 1 31.51 31.97
k = 2 38.01 49.00
k = 3 32.52 48.95
k = 4 39.29 48.45

estimation error below 5%, beyond which there are
minimal gains for in-context learning performance.
Thus, we set the number of anchors as 5.

Duplicated samples. When the candidate sam-
ple set contains duplicate samples, it can affect the
selection results of similarity-based methods, as
these methods consider only the input data itself,
assigning identical similarity scores to duplicate
samples. To investigate the impact of repeated sam-
ples, we conduct experiments on the StrategyQA
dataset by duplicating each candidate sample three
times (Table 10), allowing us to analyze how redun-
dancy influences the selection process and overall
model performance.

Model size. We use ICL-GRADRE to com-
pare the in-context learning performance across
different LMs, including LLaMA-1B, OPT-1.3B,
LLaMA-3B, DeepSeek-7B, and LLaMA-8B. We
evaluate ICL-GRADRE on the SST-2 dataset, vary-
ing the number of demonstrations from 3 to 8. We
find that under the same number of demonstration
examples, DeepSeek-7B performs the best across
the six models. Additionally, we find that mod-
els with more parameters tend to achieve better
in-context learning performances.

Robustness of random ensemble. One of the
main contributions of this paper is the develop-
ment of an influence score for demonstration ex-
amples in in-context learning, utilizing a random
ensemble approach (see Algorithm 2). This ap-
proach has been used to estimate data influence in
prior work on data attribution and task selection
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Table 11: To illustrate the scoring mechanism in our
random ensemble method, we report the average score
of demonstration samples from β(1) and β(2), given the
query set generated from β(1). We vary the number of
subsets and find that the in-distribution samples always
achieve lower loss than out-of-distribution samples.

# Subsets 5 50 100 1000

Samples from β(1) 2.1±2.0 3.1±1.1 3.9±0.8 3.7±0.4

Samples from β(2) 2.6±3.6 4.6±2.7 5.2±2.5 5.4±2.7

(e.g., higher-order task affinity scores (Fifty et al.,
2021)), where it has been shown to capture higher-
order relationships between samples or tasks. Our
paper shows that the averaged random ensemble
scores remain effective for selecting demonstra-
tions for in-context learning. This is illustrated
through a case study on linear functions, with ex-
tensions to nonlinear functions such as multi-layer
perceptrons. We find that as the number of sam-
pled subsets increases, the scores converge, allow-
ing them to separate demonstrations drawn from
the same function class from those from another
function class.

We now elaborate on the example of linear func-
tions (Garg et al., 2022). As the number of sam-
pled subsets increases, this results in a separation
in the scores between good and poor examples.
Suppose demonstrations are drawn from two lin-
ear functions with coefficients β(1) and β(2), and
training queries are sampled from β(1). For sub-
sets of demonstrations with more than 20 samples
from β(1), the model yields near-zero loss. As we
sample over 50 subsets, we observe a separation be-
tween the scores of demonstrations from β(1) and
β(2), which indicates the effectiveness of random
ensemble. We report the results in Table 11.

Note that in Table 2, we have evaluated the av-
erage error across different ranges of distances be-
tween a random subset and the anchor prompt. In-
deed, we noticed that when the distance is lower,
the error tends to be smaller. With a relative dis-
tance of up to 40%, the error remains within 2%. In
practice, we find that over 80% of random subsets
remain within 30% distance to the anchor prompts.

Additionally, we find that the loss of using dif-
ferent orders of demonstration examples is similar.
On the SST-2 and modular addition dataset, we
measure the variance in loss across different per-

mutations of demonstration order. The number of
demonstration examples is 8. We find that the vari-
ance is less than 2% of the mean loss, suggesting
that the model is largely insensitive to the order of
demonstrations. Based on this observation, we do
not model order sensitivity in our approach.

B.4 Extensions

Selection for individual test queries. Our approach
can be directly applied to selecting demonstration
examples for individual test queries by specifying a
training query set for each test query. One method
is to select training queries with feature represen-
tations that are closest to the given test query. We
evaluate this on the SST-2 and Modular Addition
datasets. We find that this method improves test ac-
curacy by an average of 6% compared to selecting
a single demonstration subset.

We note that, in both settings of selecting demon-
strations for each or all test queries, the computa-
tional cost of our approach is roughly the same.
This is because our approach requires only com-
puting the loss and gradients of anchor prompts
on the training queries once, and then estimating
the loss on other subsets using the gradient-based
estimation.

Unlabeled demonstrations. The methods de-
scribed above assume access to a labeled demon-
stration set. We can extend them to the unlabeled
setting by generating pseudo-labels for the demon-
stration set using a two-step procedure: first, ap-
ply top-k to select a labeled set of demonstrations
Ŝ. Second, use the prompt constructed from Ŝ
to label the demonstration inputs. Then, we can
apply our methods with the pseudo-labels. In our
ablation studies, we find that pseudo-labels yield
performance comparable to ground-truth labels,
consistent with prior work (Min et al., 2022).

To investigate the above, we evaluate ICL-
GRADSEL under three labeling settings for the
demonstration examples: (1) Pseudo-labels, which
are obtained from model predictions, (2) True la-
bels, which are the real output of the queries, and
(3) Random labels, where the label assignments
are randomly shuffled. We conduct this analysis on
the SST-2 and CR datasets using the DeepSeek-7B
model, with k = 3 prompt samples.

Remarkably, we observe that the choice of labels
yields the same final performance, whether accu-
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rate, pseudo, or random labels. All three settings
yield identical accuracy scores for both datasets.
For SST-2, we observe approximately 0.895 for
pseudo, true, or random labels, and around 0.742
for CR, using the DeepSeek-LLM-7B model.

These findings suggest that the effectiveness of
ICL-GRADSEL does not rely heavily on the se-
mantic correctness of the labels within the selected
demonstrations. Instead, the input content and
structural patterns within the prompts play a domi-
nant role in guiding the model’s prediction. This
observation aligns with the findings of Min et al.
(2022), who showed that in-context learning can
still perform well even when demonstrations con-
tain incorrect or misleading label information.

B.5 Model Generalization
Finally, we assess model generalization by mea-
suring sharpness. We design an inference method
by injecting random noise to compute the Hessian
trace. Specifically, we sample a d-dimensional
isotropic Gaussian variable U ∼ N (0, σ2 Id). Us-
ing Taylor’s expansion, we have:

f(x+ U) =f(x) + ⟨U,∇f(x)⟩

+
1

2
U⊤[∇2f(x)]U +O(∥U∥32).

With E [U ] = 0 and E
[
UU⊤] = σ2 Id, we get

E
U∼P

[f(x+ U)] ≈ f(x) +
1

2
σ2Tr[∇2f(x)],

plus an error term that scales with O(σ3). Suppose
that σ is a small value, we can get the following
approximation of the Hessian trace:

Tr[∇2f(x)] ≈ 2

σ2

(
E

U∼P
[f(x+ U)]− f(x)

)
.

We now examine the generalization ability of dif-
ferent prompt selection strategies. We define gen-
eralization as the extent to which a prompt se-
lected for one query remains effective across other
queries. Prior methods, such as top-k, which
rely on embedding similarity, typically construct
a separate prompt for each query in isolation. In
contrast, ICL-GRADSEL selects demonstrations
jointly across the entire evaluation set, enabling
shared prompts.

The results, shown in Table 12, demonstrate
that ICL-GRADSEL not only achieves the lowest

Table 12: We measure the Hessian trace on the training
queries and testing queries for in-context learning of
linear functions. ICL-GRADSEL not only achieves the
lowest loss, but also reduces the Hessian trace. We set
k = 25 and run each experiment with 30 random seeds
to report the standard deviations.

Algorithms Hessian (Training) Hessian (Test)

Random-k 7.85±9.28 6.73±2.47

Top-k 5.84±6.16 5.78±3.94

ICL-GRADSEL 4.15±2.06 4.94±1.55

Loss (Training) Loss (Test)

Random-k 0.127±0.312 0.127±0.227

Top-k 0.205±0.378 0.066±0.101

ICL-GRADSEL 0.001±0.002 0.003±0.003

loss across all values of k, but also consistently
reduces the Hessian trace, indicating a smoother
loss surface. This suggests that the prompt selected
by ICL-GRADSEL is more robust and generalizes
better across queries. In contrast, top-k suffers
from the highest loss, highlighting the limitation of
per-query similarity-based selection. It would be
interesting to further explore the role of Hessians in
understanding in-context learning (Ju et al., 2022;
Zhang et al., 2024a). For example, recent work has
developed generalization bounds on the pretraining
objective of large language models (Finzi et al.,
2025), which connects to the Hessian spectrum.
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