@inproceedings{xu-etal-2025-schema,
title = "From Schema to State: Zero-Shot Scheme-Only Dialogue State Tracking via Diverse Synthetic Dialogue and Step-by-Step Distillation",
author = "Xu, Huan and
Li, Zequn and
Tang, Wen and
Zhang, Jian Jun",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.85/",
pages = "1640--1652",
ISBN = "979-8-89176-332-6",
abstract = "Dialogue State Tracking (DST) is crucial for linking user intentions to appropriate services in task-oriented dialogue systems. We propose a zero-shot, scheme-only approach that tackles two main challenges: generating synthetic dialogues that balance diversity with schema alignment, and efficiently distilling knowledge from a large language model (LLM) into a smaller model. Our pipeline first creates scenarios, dialogue logic flows, and utterances via dynamic complexity prompting, eliminating reliance on handcrafted templates. We then use a two-stage distillation process to learn formalized dialogue representations and DST related chain-of-thought reasoning. This structure preserves interpretive capabilities while reducing inference overhead. Experiments on the MultiWOZ benchmark show that our method achieves state-of-the-art performance under zero-shot, scheme-only situation and generalizes effectively to few-shot scenarios, offering a practical and scalable solution for domains lacking real data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2025-schema">
<titleInfo>
<title>From Schema to State: Zero-Shot Scheme-Only Dialogue State Tracking via Diverse Synthetic Dialogue and Step-by-Step Distillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zequn</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="given">Jun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Dialogue State Tracking (DST) is crucial for linking user intentions to appropriate services in task-oriented dialogue systems. We propose a zero-shot, scheme-only approach that tackles two main challenges: generating synthetic dialogues that balance diversity with schema alignment, and efficiently distilling knowledge from a large language model (LLM) into a smaller model. Our pipeline first creates scenarios, dialogue logic flows, and utterances via dynamic complexity prompting, eliminating reliance on handcrafted templates. We then use a two-stage distillation process to learn formalized dialogue representations and DST related chain-of-thought reasoning. This structure preserves interpretive capabilities while reducing inference overhead. Experiments on the MultiWOZ benchmark show that our method achieves state-of-the-art performance under zero-shot, scheme-only situation and generalizes effectively to few-shot scenarios, offering a practical and scalable solution for domains lacking real data.</abstract>
<identifier type="citekey">xu-etal-2025-schema</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.85/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1640</start>
<end>1652</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Schema to State: Zero-Shot Scheme-Only Dialogue State Tracking via Diverse Synthetic Dialogue and Step-by-Step Distillation
%A Xu, Huan
%A Li, Zequn
%A Tang, Wen
%A Zhang, Jian Jun
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F xu-etal-2025-schema
%X Dialogue State Tracking (DST) is crucial for linking user intentions to appropriate services in task-oriented dialogue systems. We propose a zero-shot, scheme-only approach that tackles two main challenges: generating synthetic dialogues that balance diversity with schema alignment, and efficiently distilling knowledge from a large language model (LLM) into a smaller model. Our pipeline first creates scenarios, dialogue logic flows, and utterances via dynamic complexity prompting, eliminating reliance on handcrafted templates. We then use a two-stage distillation process to learn formalized dialogue representations and DST related chain-of-thought reasoning. This structure preserves interpretive capabilities while reducing inference overhead. Experiments on the MultiWOZ benchmark show that our method achieves state-of-the-art performance under zero-shot, scheme-only situation and generalizes effectively to few-shot scenarios, offering a practical and scalable solution for domains lacking real data.
%U https://aclanthology.org/2025.emnlp-main.85/
%P 1640-1652
Markdown (Informal)
[From Schema to State: Zero-Shot Scheme-Only Dialogue State Tracking via Diverse Synthetic Dialogue and Step-by-Step Distillation](https://aclanthology.org/2025.emnlp-main.85/) (Xu et al., EMNLP 2025)
ACL