@inproceedings{wu-etal-2025-incorporating,
title = "Incorporating Diverse Perspectives in Cultural Alignment: Survey of Evaluation Benchmarks Through A Three-Dimensional Framework",
author = "Wu, Meng-Chen and
Chin, Si-Chi and
Wood, Tess and
Goyal, Ayush and
Sadagopan, Narayanan",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.862/",
pages = "17037--17072",
ISBN = "979-8-89176-332-6",
abstract = "Large Language Models (LLMs) increasingly serve diverse global audiences, making it critical for responsible AI deployment across cultures. While recent works have proposed various approaches to enhance cultural alignment in LLMs, a systematic analysis of their evaluation benchmarks remains needed. We propose a novel framework that conceptualizes alignment along three dimensions: Cultural Group (who to align with), Cultural Elements (what to align), and Awareness Scope (how to align: majority-focused vs. diversity-aware). Through this framework, we analyze 105 cultural alignment evaluation benchmarks, revealing significant imbalances: Region (37.9{\%}) and Language (28.9{\%}) dominate Cultural Group representation; Social and Political Relations (25.1{\%}) and Speech and Language (20.9{\%}) concentrate Cultural Elements coverage; and an overwhelming majority (97.1{\%}) of datasets adopt majority-focused Awareness Scope approaches. In a case study examining AI safety evaluation across nine Asian countries (Section 5), we demonstrate how our framework reveals critical gaps between existing benchmarks and real-world cultural biases identified in the study, providing actionable guidance for developing more comprehensive evaluation resources tailored to specific deployment contexts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2025-incorporating">
<titleInfo>
<title>Incorporating Diverse Perspectives in Cultural Alignment: Survey of Evaluation Benchmarks Through A Three-Dimensional Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meng-Chen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Si-Chi</namePart>
<namePart type="family">Chin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tess</namePart>
<namePart type="family">Wood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Narayanan</namePart>
<namePart type="family">Sadagopan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) increasingly serve diverse global audiences, making it critical for responsible AI deployment across cultures. While recent works have proposed various approaches to enhance cultural alignment in LLMs, a systematic analysis of their evaluation benchmarks remains needed. We propose a novel framework that conceptualizes alignment along three dimensions: Cultural Group (who to align with), Cultural Elements (what to align), and Awareness Scope (how to align: majority-focused vs. diversity-aware). Through this framework, we analyze 105 cultural alignment evaluation benchmarks, revealing significant imbalances: Region (37.9%) and Language (28.9%) dominate Cultural Group representation; Social and Political Relations (25.1%) and Speech and Language (20.9%) concentrate Cultural Elements coverage; and an overwhelming majority (97.1%) of datasets adopt majority-focused Awareness Scope approaches. In a case study examining AI safety evaluation across nine Asian countries (Section 5), we demonstrate how our framework reveals critical gaps between existing benchmarks and real-world cultural biases identified in the study, providing actionable guidance for developing more comprehensive evaluation resources tailored to specific deployment contexts.</abstract>
<identifier type="citekey">wu-etal-2025-incorporating</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.862/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>17037</start>
<end>17072</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Diverse Perspectives in Cultural Alignment: Survey of Evaluation Benchmarks Through A Three-Dimensional Framework
%A Wu, Meng-Chen
%A Chin, Si-Chi
%A Wood, Tess
%A Goyal, Ayush
%A Sadagopan, Narayanan
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F wu-etal-2025-incorporating
%X Large Language Models (LLMs) increasingly serve diverse global audiences, making it critical for responsible AI deployment across cultures. While recent works have proposed various approaches to enhance cultural alignment in LLMs, a systematic analysis of their evaluation benchmarks remains needed. We propose a novel framework that conceptualizes alignment along three dimensions: Cultural Group (who to align with), Cultural Elements (what to align), and Awareness Scope (how to align: majority-focused vs. diversity-aware). Through this framework, we analyze 105 cultural alignment evaluation benchmarks, revealing significant imbalances: Region (37.9%) and Language (28.9%) dominate Cultural Group representation; Social and Political Relations (25.1%) and Speech and Language (20.9%) concentrate Cultural Elements coverage; and an overwhelming majority (97.1%) of datasets adopt majority-focused Awareness Scope approaches. In a case study examining AI safety evaluation across nine Asian countries (Section 5), we demonstrate how our framework reveals critical gaps between existing benchmarks and real-world cultural biases identified in the study, providing actionable guidance for developing more comprehensive evaluation resources tailored to specific deployment contexts.
%U https://aclanthology.org/2025.emnlp-main.862/
%P 17037-17072
Markdown (Informal)
[Incorporating Diverse Perspectives in Cultural Alignment: Survey of Evaluation Benchmarks Through A Three-Dimensional Framework](https://aclanthology.org/2025.emnlp-main.862/) (Wu et al., EMNLP 2025)
ACL