@inproceedings{liu-etal-2025-pychoagent,
title = "{P}ycho{A}gent: Psychology-driven {LLM} Agents for Explainable Panic Prediction on Social Media during Sudden Disaster Events",
author = "Liu, Mengzhu and
Zhu, Zhengqiu and
Ai, Chuan and
Gao, Chen and
Li, Xinghong and
He, Lingnan and
Lai, Kaisheng and
Chen, Yingfeng and
Lu, Xin and
Li, Yong and
Yin, Quanjun",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.865/",
pages = "17127--17145",
ISBN = "979-8-89176-332-6",
abstract = "Accurately predicting public panic sentiment on social media is crucial for proactive governance and crisis management. Current efforts on this problem face three main challenges: lack of finely annotated data hinders emotion prediction studies, unmodeled risk perception causes prediction inaccuracies, and insufficient interpretability of panic formation mechanisms limits mechanistic insight. We address these issues by proposing a Psychology-driven generative Agent framework (PsychoAgent) for explainable panic prediction based on emotion arousal theory. Specifically, we first construct a fine-grained panic emotion dataset (namely COPE) via human-AI (Large Language Models, LLMs) collaboration, combining scalable LLM-based labeling with human annotators to ensure accuracy for panic emotion and to mitigate biases from linguistic variations. Then, we construct PsychoAgent integrating cross-domain heterogeneous data grounded in psychological mechanisms to model risk perception and cognitive differences in emotion generation. To enhance interpretability, we design an LLM-based role-playing agent that simulates individual psychological chains through dedicatedly designed prompts. Experimental results on our annotated dataset show that PsychoAgent improves panic emotion prediction performance by 13{\%} to 21{\%} compared to baseline models. Furthermore, the explainability and generalization of our approach is validated. Crucially, this represents a paradigm shift from opaque ``data-driven fitting'' to transparent ``role-based simulation with mechanistic interpretation'' for panic emotion prediction during emergencies. Our implementation is publicly available at: https://github.com/supersonic0919/PsychoAgent."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-pychoagent">
<titleInfo>
<title>PychoAgent: Psychology-driven LLM Agents for Explainable Panic Prediction on Social Media during Sudden Disaster Events</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengzhu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengqiu</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuan</namePart>
<namePart type="family">Ai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinghong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingnan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaisheng</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingfeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quanjun</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Accurately predicting public panic sentiment on social media is crucial for proactive governance and crisis management. Current efforts on this problem face three main challenges: lack of finely annotated data hinders emotion prediction studies, unmodeled risk perception causes prediction inaccuracies, and insufficient interpretability of panic formation mechanisms limits mechanistic insight. We address these issues by proposing a Psychology-driven generative Agent framework (PsychoAgent) for explainable panic prediction based on emotion arousal theory. Specifically, we first construct a fine-grained panic emotion dataset (namely COPE) via human-AI (Large Language Models, LLMs) collaboration, combining scalable LLM-based labeling with human annotators to ensure accuracy for panic emotion and to mitigate biases from linguistic variations. Then, we construct PsychoAgent integrating cross-domain heterogeneous data grounded in psychological mechanisms to model risk perception and cognitive differences in emotion generation. To enhance interpretability, we design an LLM-based role-playing agent that simulates individual psychological chains through dedicatedly designed prompts. Experimental results on our annotated dataset show that PsychoAgent improves panic emotion prediction performance by 13% to 21% compared to baseline models. Furthermore, the explainability and generalization of our approach is validated. Crucially, this represents a paradigm shift from opaque “data-driven fitting” to transparent “role-based simulation with mechanistic interpretation” for panic emotion prediction during emergencies. Our implementation is publicly available at: https://github.com/supersonic0919/PsychoAgent.</abstract>
<identifier type="citekey">liu-etal-2025-pychoagent</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.865/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>17127</start>
<end>17145</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PychoAgent: Psychology-driven LLM Agents for Explainable Panic Prediction on Social Media during Sudden Disaster Events
%A Liu, Mengzhu
%A Zhu, Zhengqiu
%A Ai, Chuan
%A Gao, Chen
%A Li, Xinghong
%A He, Lingnan
%A Lai, Kaisheng
%A Chen, Yingfeng
%A Lu, Xin
%A Li, Yong
%A Yin, Quanjun
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F liu-etal-2025-pychoagent
%X Accurately predicting public panic sentiment on social media is crucial for proactive governance and crisis management. Current efforts on this problem face three main challenges: lack of finely annotated data hinders emotion prediction studies, unmodeled risk perception causes prediction inaccuracies, and insufficient interpretability of panic formation mechanisms limits mechanistic insight. We address these issues by proposing a Psychology-driven generative Agent framework (PsychoAgent) for explainable panic prediction based on emotion arousal theory. Specifically, we first construct a fine-grained panic emotion dataset (namely COPE) via human-AI (Large Language Models, LLMs) collaboration, combining scalable LLM-based labeling with human annotators to ensure accuracy for panic emotion and to mitigate biases from linguistic variations. Then, we construct PsychoAgent integrating cross-domain heterogeneous data grounded in psychological mechanisms to model risk perception and cognitive differences in emotion generation. To enhance interpretability, we design an LLM-based role-playing agent that simulates individual psychological chains through dedicatedly designed prompts. Experimental results on our annotated dataset show that PsychoAgent improves panic emotion prediction performance by 13% to 21% compared to baseline models. Furthermore, the explainability and generalization of our approach is validated. Crucially, this represents a paradigm shift from opaque “data-driven fitting” to transparent “role-based simulation with mechanistic interpretation” for panic emotion prediction during emergencies. Our implementation is publicly available at: https://github.com/supersonic0919/PsychoAgent.
%U https://aclanthology.org/2025.emnlp-main.865/
%P 17127-17145
Markdown (Informal)
[PychoAgent: Psychology-driven LLM Agents for Explainable Panic Prediction on Social Media during Sudden Disaster Events](https://aclanthology.org/2025.emnlp-main.865/) (Liu et al., EMNLP 2025)
ACL
- Mengzhu Liu, Zhengqiu Zhu, Chuan Ai, Chen Gao, Xinghong Li, Lingnan He, Kaisheng Lai, Yingfeng Chen, Xin Lu, Yong Li, and Quanjun Yin. 2025. PychoAgent: Psychology-driven LLM Agents for Explainable Panic Prediction on Social Media during Sudden Disaster Events. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17127–17145, Suzhou, China. Association for Computational Linguistics.