@inproceedings{poiroux-etal-2025-reliable,
title = "Reliable Evaluation and Benchmarks for Statement Autoformalization",
author = "Poiroux, Auguste and
Weiss, Gail and
Kun{\v{c}}ak, Viktor and
Bosselut, Antoine",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.907/",
pages = "17958--17980",
ISBN = "979-8-89176-332-6",
abstract = "Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet{\#}, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1{\%} accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poiroux-etal-2025-reliable">
<titleInfo>
<title>Reliable Evaluation and Benchmarks for Statement Autoformalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Auguste</namePart>
<namePart type="family">Poiroux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gail</namePart>
<namePart type="family">Weiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viktor</namePart>
<namePart type="family">Kunčak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bosselut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.</abstract>
<identifier type="citekey">poiroux-etal-2025-reliable</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.907/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>17958</start>
<end>17980</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reliable Evaluation and Benchmarks for Statement Autoformalization
%A Poiroux, Auguste
%A Weiss, Gail
%A Kunčak, Viktor
%A Bosselut, Antoine
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F poiroux-etal-2025-reliable
%X Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.
%U https://aclanthology.org/2025.emnlp-main.907/
%P 17958-17980
Markdown (Informal)
[Reliable Evaluation and Benchmarks for Statement Autoformalization](https://aclanthology.org/2025.emnlp-main.907/) (Poiroux et al., EMNLP 2025)
ACL