@inproceedings{lee-etal-2025-unidebugger,
title = "{U}ni{D}ebugger: Hierarchical Multi-Agent Framework for Unified Software Debugging",
author = "Lee, Cheryl and
Xia, Chunqiu Steven and
Yang, Longji and
Huang, Jen-tse and
Zhu, Zhouruixing and
Zhang, Lingming and
Lyu, Michael R.",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.921/",
pages = "18248--18277",
ISBN = "979-8-89176-332-6",
abstract = "Software debugging is a time-consuming endeavor involving a series of steps, such as fault localization and patch generation, each requiring thorough analysis and a deep understanding of the underlying logic. While large language models (LLMs) demonstrate promising potential in coding tasks, their performance in debugging remains limited. Current LLM-based methods often focus on isolated steps and struggle with complex bugs. In this paper, we propose the first end-to-end framework, UniDebugger, for unified debugging through multi-agent synergy. It mimics the entire cognitive processes of developers, with each agent specialized as a particular component of this process rather than mirroring the actions of an independent expert as in previous multi-agent systems. Agents are coordinated through a three-level design, following a cognitive model of debugging, allowing adaptive handling of bugs with varying complexities. Experiments on extensive benchmarks demonstrate that UniDebugger significantly outperforms state-of-the-art repair methods, fixing 1.25x to 2.56x bugs on the repo-level benchmark, Defects4J. This performance is achieved without requiring ground-truth root-cause code statements, unlike the baselines. Our source code is available on an anonymous link: https://github.com/BEbillionaireUSD/UniDebugger."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2025-unidebugger">
<titleInfo>
<title>UniDebugger: Hierarchical Multi-Agent Framework for Unified Software Debugging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cheryl</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunqiu</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Longji</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jen-tse</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhouruixing</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingming</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Software debugging is a time-consuming endeavor involving a series of steps, such as fault localization and patch generation, each requiring thorough analysis and a deep understanding of the underlying logic. While large language models (LLMs) demonstrate promising potential in coding tasks, their performance in debugging remains limited. Current LLM-based methods often focus on isolated steps and struggle with complex bugs. In this paper, we propose the first end-to-end framework, UniDebugger, for unified debugging through multi-agent synergy. It mimics the entire cognitive processes of developers, with each agent specialized as a particular component of this process rather than mirroring the actions of an independent expert as in previous multi-agent systems. Agents are coordinated through a three-level design, following a cognitive model of debugging, allowing adaptive handling of bugs with varying complexities. Experiments on extensive benchmarks demonstrate that UniDebugger significantly outperforms state-of-the-art repair methods, fixing 1.25x to 2.56x bugs on the repo-level benchmark, Defects4J. This performance is achieved without requiring ground-truth root-cause code statements, unlike the baselines. Our source code is available on an anonymous link: https://github.com/BEbillionaireUSD/UniDebugger.</abstract>
<identifier type="citekey">lee-etal-2025-unidebugger</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.921/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>18248</start>
<end>18277</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UniDebugger: Hierarchical Multi-Agent Framework for Unified Software Debugging
%A Lee, Cheryl
%A Xia, Chunqiu Steven
%A Yang, Longji
%A Huang, Jen-tse
%A Zhu, Zhouruixing
%A Zhang, Lingming
%A Lyu, Michael R.
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F lee-etal-2025-unidebugger
%X Software debugging is a time-consuming endeavor involving a series of steps, such as fault localization and patch generation, each requiring thorough analysis and a deep understanding of the underlying logic. While large language models (LLMs) demonstrate promising potential in coding tasks, their performance in debugging remains limited. Current LLM-based methods often focus on isolated steps and struggle with complex bugs. In this paper, we propose the first end-to-end framework, UniDebugger, for unified debugging through multi-agent synergy. It mimics the entire cognitive processes of developers, with each agent specialized as a particular component of this process rather than mirroring the actions of an independent expert as in previous multi-agent systems. Agents are coordinated through a three-level design, following a cognitive model of debugging, allowing adaptive handling of bugs with varying complexities. Experiments on extensive benchmarks demonstrate that UniDebugger significantly outperforms state-of-the-art repair methods, fixing 1.25x to 2.56x bugs on the repo-level benchmark, Defects4J. This performance is achieved without requiring ground-truth root-cause code statements, unlike the baselines. Our source code is available on an anonymous link: https://github.com/BEbillionaireUSD/UniDebugger.
%U https://aclanthology.org/2025.emnlp-main.921/
%P 18248-18277
Markdown (Informal)
[UniDebugger: Hierarchical Multi-Agent Framework for Unified Software Debugging](https://aclanthology.org/2025.emnlp-main.921/) (Lee et al., EMNLP 2025)
ACL