@inproceedings{he-etal-2025-gcml,
title = "{GCML}: Gradient Coherence Guided Meta-Learning for Cross-Domain Emerging Topic Rumor Detection",
author = "He, Zejiang and
Huang, Jingyuan and
Lu, Menglong and
Huang, Zhen and
Liu, Shanshan and
Tian, Zhiliang and
Li, Dongsheng",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.968/",
pages = "19159--19173",
ISBN = "979-8-89176-332-6",
abstract = "With the emergence of new topics on social media as sources of rumor propagation, addressing the domain shift between the source and target domain and the target domain samples scarcity remains a crucial task in cross-domain rumor detection. Traditional deep learning-based methods and LLM-based methods are mostly focused on the in-domain condition, thus having poor performance in cross-domain setting. Existing domain adaptation rumor detection approaches ignore the data generalization differences and rely on a large amount of unlabeled target domain samples to achieve domain adaptation, resulting in less effective on emerging topic rumor detection. In this paper, we propose a Gradient Coherence guided Meta-Learning approach (GCML) for emerging topics rumor detection. Firstly, we calculate the task generalization score of each source task (sampled from source domain) from a gradient coherence perspective, and selectively learn more ``generalizable'' tasks that are more beneficial in adapting to the target domain. Secondly, we leverage meta-learning to alleviate the target domain samples scarcity, which utilizes task generalization scores to re-weight meta-test gradients and adaptively updates learning rate. Extensive experimental results on real-world datasets show that our method substantially outperforms SOTA baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2025-gcml">
<titleInfo>
<title>GCML: Gradient Coherence Guided Meta-Learning for Cross-Domain Emerging Topic Rumor Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zejiang</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingyuan</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Menglong</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shanshan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiliang</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongsheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>With the emergence of new topics on social media as sources of rumor propagation, addressing the domain shift between the source and target domain and the target domain samples scarcity remains a crucial task in cross-domain rumor detection. Traditional deep learning-based methods and LLM-based methods are mostly focused on the in-domain condition, thus having poor performance in cross-domain setting. Existing domain adaptation rumor detection approaches ignore the data generalization differences and rely on a large amount of unlabeled target domain samples to achieve domain adaptation, resulting in less effective on emerging topic rumor detection. In this paper, we propose a Gradient Coherence guided Meta-Learning approach (GCML) for emerging topics rumor detection. Firstly, we calculate the task generalization score of each source task (sampled from source domain) from a gradient coherence perspective, and selectively learn more “generalizable” tasks that are more beneficial in adapting to the target domain. Secondly, we leverage meta-learning to alleviate the target domain samples scarcity, which utilizes task generalization scores to re-weight meta-test gradients and adaptively updates learning rate. Extensive experimental results on real-world datasets show that our method substantially outperforms SOTA baselines.</abstract>
<identifier type="citekey">he-etal-2025-gcml</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.968/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>19159</start>
<end>19173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GCML: Gradient Coherence Guided Meta-Learning for Cross-Domain Emerging Topic Rumor Detection
%A He, Zejiang
%A Huang, Jingyuan
%A Lu, Menglong
%A Huang, Zhen
%A Liu, Shanshan
%A Tian, Zhiliang
%A Li, Dongsheng
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F he-etal-2025-gcml
%X With the emergence of new topics on social media as sources of rumor propagation, addressing the domain shift between the source and target domain and the target domain samples scarcity remains a crucial task in cross-domain rumor detection. Traditional deep learning-based methods and LLM-based methods are mostly focused on the in-domain condition, thus having poor performance in cross-domain setting. Existing domain adaptation rumor detection approaches ignore the data generalization differences and rely on a large amount of unlabeled target domain samples to achieve domain adaptation, resulting in less effective on emerging topic rumor detection. In this paper, we propose a Gradient Coherence guided Meta-Learning approach (GCML) for emerging topics rumor detection. Firstly, we calculate the task generalization score of each source task (sampled from source domain) from a gradient coherence perspective, and selectively learn more “generalizable” tasks that are more beneficial in adapting to the target domain. Secondly, we leverage meta-learning to alleviate the target domain samples scarcity, which utilizes task generalization scores to re-weight meta-test gradients and adaptively updates learning rate. Extensive experimental results on real-world datasets show that our method substantially outperforms SOTA baselines.
%U https://aclanthology.org/2025.emnlp-main.968/
%P 19159-19173
Markdown (Informal)
[GCML: Gradient Coherence Guided Meta-Learning for Cross-Domain Emerging Topic Rumor Detection](https://aclanthology.org/2025.emnlp-main.968/) (He et al., EMNLP 2025)
ACL