@inproceedings{liao-etal-2025-e2llm,
title = "{E}2{LLM}: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning",
author = "Liao, Zihan and
Wang, Jun and
Yu, Hang and
Wei, Lingxiao and
Li, Jianguo and
Wang, Jun and
Zhang, Wei",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.970/",
pages = "19212--19241",
ISBN = "979-8-89176-332-6",
abstract = "Processing long contexts is increasingly important for Large Language Models (LLMs) in tasks like multi-turn dialogues, code generation, and document summarization. This paper addresses the challenges of achieving high long-context performance, low computational complexity, and compatibility with pretrained models {--} collectively termed the ``impossible triangle''. We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. E2LLM divides long contexts into chunks, compresses each into soft prompts using a pretrained text encoder, and aligns these representations with a decoder-only LLM via an adapter. To enhance the LLM{'}s reasoning with these soft prompts, we employ two training objectives: encoder output reconstruction and long-context instruction fine-tuning. Extensive experiments reveal that E2LLM not only outperforms 8 state-of-the-art (SOTA) methods in effectiveness and efficiency for document summarization and question answering, but also achieves the best performance on LongBench v2 among models of comparable size. The source code is available at \url{https://github.com/codefuse-ai/E2LLM}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2025-e2llm">
<titleInfo>
<title>E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zihan</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingxiao</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianguo</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Processing long contexts is increasingly important for Large Language Models (LLMs) in tasks like multi-turn dialogues, code generation, and document summarization. This paper addresses the challenges of achieving high long-context performance, low computational complexity, and compatibility with pretrained models – collectively termed the “impossible triangle”. We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. E2LLM divides long contexts into chunks, compresses each into soft prompts using a pretrained text encoder, and aligns these representations with a decoder-only LLM via an adapter. To enhance the LLM’s reasoning with these soft prompts, we employ two training objectives: encoder output reconstruction and long-context instruction fine-tuning. Extensive experiments reveal that E2LLM not only outperforms 8 state-of-the-art (SOTA) methods in effectiveness and efficiency for document summarization and question answering, but also achieves the best performance on LongBench v2 among models of comparable size. The source code is available at https://github.com/codefuse-ai/E2LLM.</abstract>
<identifier type="citekey">liao-etal-2025-e2llm</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.970/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>19212</start>
<end>19241</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning
%A Liao, Zihan
%A Wang, Jun
%A Yu, Hang
%A Wei, Lingxiao
%A Li, Jianguo
%A Zhang, Wei
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F liao-etal-2025-e2llm
%X Processing long contexts is increasingly important for Large Language Models (LLMs) in tasks like multi-turn dialogues, code generation, and document summarization. This paper addresses the challenges of achieving high long-context performance, low computational complexity, and compatibility with pretrained models – collectively termed the “impossible triangle”. We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. E2LLM divides long contexts into chunks, compresses each into soft prompts using a pretrained text encoder, and aligns these representations with a decoder-only LLM via an adapter. To enhance the LLM’s reasoning with these soft prompts, we employ two training objectives: encoder output reconstruction and long-context instruction fine-tuning. Extensive experiments reveal that E2LLM not only outperforms 8 state-of-the-art (SOTA) methods in effectiveness and efficiency for document summarization and question answering, but also achieves the best performance on LongBench v2 among models of comparable size. The source code is available at https://github.com/codefuse-ai/E2LLM.
%U https://aclanthology.org/2025.emnlp-main.970/
%P 19212-19241
Markdown (Informal)
[E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning](https://aclanthology.org/2025.emnlp-main.970/) (Liao et al., EMNLP 2025)
ACL