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Abstract

Processing long contexts is increasingly im-
portant for Large Language Models (LLMs)
in tasks like multi-turn dialogues, code gen-
eration, and document summarization. This
paper addresses the challenges of achieving
high long-context performance, low computa-
tional complexity, and compatibility with pre-
trained models – collectively termed the “im-
possible triangle”. We introduce E2LLM (En-
coder Elongated Large Language Models), a
novel approach that effectively navigates this
paradox. E2LLM divides long contexts into
chunks, compresses each into soft prompts us-
ing a pretrained text encoder, and aligns these
representations with a decoder-only LLM via
an adapter. To enhance the LLM’s reasoning
with these soft prompts, we employ two train-
ing objectives: encoder output reconstruction
and long-context instruction fine-tuning. Exten-
sive experiments reveal that E2LLM not only
outperforms 8 state-of-the-art (SOTA) meth-
ods in effectiveness and efficiency for doc-
ument summarization and question answer-
ing, but also achieves the best performance
on LongBench v2 among models of compa-
rable size. The source code is available at
https://github.com/codefuse-ai/E2LLM

1 Introduction

Understanding and reasoning about long con-
text has become essential for LLMs, especially
for tasks like multi-round dialogues (Bai et al.,
2024a), (multi)-repository code generation (Zhang
et al., 2023), and (multi)-document summariza-
tion (Giorgi et al., 2023) and question answer-
ing (Singh et al., 2021). These tasks often require
processing thousands or even millions of tokens to
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Figure 1: E2LLM solves the “impossible triangle” chal-
lenge of Performance, Efficiency, and Compatibility.

ensure coherence and accuracy. In addition, tech-
niques that effectively boost the performance of
LLMs—such as chain-of-thought reasoning (Wei
et al., 2022), in-context learning (Dong et al., 2022),
and retrieving relevant documents or historical con-
versations (Ding et al., 2024b)—are also pushing
the demand for longer context window.

Considerable efforts have been and are still be-
ing put into increasing the context length of LLMs,
aiming at achieving strong performance for longer
contexts (T1), while reducing the training and infer-
ence complexity (T2), and at the same time being
compatible with pretrained models (T3). Achieving
this compatibility is crucial for effectively leverag-
ing the pretrained knowledge contained in these
models, allowing for parameter and sample effi-
ciency without necessitating extensive additional
training with large datasets. However, achieving all
three targets simultaneously presents a formidable
challenge that often leads to some compromises, a
phenomenon we refer to as the “impossible trian-
gle”, as illustrated in Figure 1. Current research
in this field primarily focuses on three main av-
enues: modifying position embeddings, attention
mechanisms, and the long input sequence itself.1

Length Extension: The first group of methods

1A detailed literature review is provided in Appendix A.
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adjust the position embeddings of LLMs to ac-
commodate longer context extensions (Peng et al.,
2023; Ding et al., 2024a). This typically involves
selecting a large base value for RoPE (Su et al.,
2024) followed by continued pretraining or fine-
tuning (Zhao et al., 2024; Gao et al., 2024a). While
these methods effectively extend context length
(T1), they typically require substantial continued
pretraining with tens of billions of tokens (T3) and
incur high computational complexity during both
training and inference (T2). For instance, even with
the ability to extend context window to 2M, as seen
in LongRoPE (Ding et al., 2024a), enormous re-
sources are required to train and deploy the model,
and inference times can be prohibitively long for
extended sequences.
Sparse Attention: The second group replaces full
attention in LLMs with local attention or a com-
bination of global and local attention (Chen et al.,
2023a; Xiao et al., 2024). This approach signifi-
cantly reduces the quadratic complexity associated
with full attention, even achieving linear complex-
ity in theory (T2). However, a notable concern with
sparse attention is its potential to neglect informa-
tive history, as certain tokens may not be attended
to during the attention calculations (T1). More-
over, since LLMs are not originally pretrained with
sparse attention, adapting them to sparse attention
may require extensive training or fine-tuning (T3).
Prompt Compression: The third group of strate-
gies directly compresses the input sequence to re-
duce its length (T2), which can be further divided
into two subcategories. The first subgroup, known
as hard prompt compression—exemplified by
methods such as Retrieval-Augmented Generation
(RAG) (Ding et al., 2024b) and LLMLingua (Jiang
et al., 2023a)—tends to process compression and
inference in a two-step manner. As a result, any
loss of information or introduction of irrelevant con-
tent during the compression stage may adversely
affect performance in the subsequent inference step
(T1). Alternatively, the second subgroup consid-
ers soft prompt compression, which summarizes
long contexts into embedding vectors (Chevalier
et al., 2023; Tan et al., 2024). However, utiliz-
ing LLMs in these approaches to directly generate
sentence-level embeddings diverges from their orig-
inal pretraining objective of next token prediction.
Consequently, achieving satisfactory performance
in this context often demands rigorous training or
fine-tuning to align the model’s capabilities with
the new objective (T3).

In this paper, we propose a novel compression
based method named E2LLM (Encoder Elongated
Large Language Models) that adeptly navigates
the complexities of the “impossible triangle”. As
shown in Figure 2, we first divide a long context
into smaller chunks. A pre-trained text encoder
(e.g., BERT) then processes each chunk, generat-
ing embeddings for the tokens within it. An adapter
subsequently aggregates these token-level embed-
dings into a single, representative “chunk token”
(a chunk-level embedding) and projects it into the
input embedding space of the LLM decoder. To
ensure alignment between the encoder and decoder,
we employ two training objectives: reconstruction
of the original input text from the encoded embed-
dings (“understanding”) and long-context instruc-
tion fine-tuning (“reasoning”).

We postulate that LLMs are inherently rich
in knowledge; thus, properly compressed soft
prompts (i.e., the chunk tokens) can succinctly
convey adequate information for LLMs to gen-
erate accurate answers. Moreover, pre-trained
encoder models are inherently crafted to pro-
duce chunk-level representations. As a result,
this design allows E2LLM to leverage the strengths
of both pre-trained encoders and decoders, min-
imizing the need for extensive additional train-
ing (T3). Additionally, compressing each origi-
nal chunk into a single vector (the chunk token)
not only enhances training and inference efficiency
(T2) but also scales up the context length signifi-
cantly (T1). Indeed, the theoretical context window
equals the product of the encoder and decoder se-
quence lengths. Experiments show that E2LLM
outperforms 8 baselines in long document summa-
rization and QA using the same pretrained LLM
and limited fine-tuning data. It also achieves the
best performance on the challenging LongBench
v2 (Bai et al., 2024b) benchmark among compara-
bly sized models. These results validate E2LLM’s
effectiveness in balancing performance, efficiency,
and compatibility. To summarize, our main contri-
butions are:
• We propose E2LLM, a novel long-context model-

ing framework built on pre-trained text encoders
and decoder-only LLMs to effectively address
the “impossible triangle” challenge.

• We introduce two training objectives: soft prompt
reconstruction and long-context instruction fine-
tuning, enabling the LLM to understand the soft
prompt while reasoning about accurate outputs.
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• Comprehensive experiments conducted on di-
verse benchmarks demonstrate the efficiency and
practicality of E2LLM and reveal its superior-
ity over 8 SOTA baselines and competency on
LongBench v2.

2 Our Approach: E2LLM

In this section, we detail E2LLM, which effectively
combines the strengths of pre-trained text encoders
and LLM decoders to facilitate understanding and
reasoning over long contexts.

2.1 Model Architecture

Figure 2 illustrates the architecture of the E2LLM
framework, which comprises four key components:
a Chunker, a Text Encoder Eθ, an Adapter Aϕ, and
an LLM Decoder Dη. Here, θ, ϕ, and η denote
the (learnable) parameters specific to each compo-
nent. For long input contexts, E2LLM first per-
forms chunking. Each resulting chunk is processed
by the encoder, which captures its token-level rep-
resentations (the black tokens in Figure 2). The
adapter then aggregates these token-level embed-
dings into a single representative “chunk token”
(a chunk-level embedding; see the green tokens
in Figure 2) and maps it to the input embedding
space of the LLM decoder, allowing the decoder
to interpret the chunk effectively. Ultimately, the
decoder utilizes these embeddings as substitutes for
the original context and executes two fine-tuning
tasks—“understanding” and “reasoning”—to train
the entire framework. It is essential to note that the
choice of models for the encoder and decoder,
the method of chunking, and the network archi-
tecture of the adapter can be customized to meet
the needs of different domains. E2LLM serves as
a flexible framework, seamlessly integrating these
components to effectively manage long contexts
while being capable of leveraging the power of
more advanced components when available. We
will now introduce each component in detail.

Chunker: The Chunker is responsible for divid-
ing long contexts into smaller, manageable chunks
while ensuring that the token length of each chunk
does not exceed the maximum sequence length of
the text encoder. Here, we adopt a straightforward
yet effective approach: first, we define a chunk size
and extract the initial chunk, then backtrack within
this chunk to find breakpoints, such as periods or
line breaks. After locating these breakpoints, a new
chunk begins at the end of the previous one, and

the backtracking method is applied again. We re-
peat this process until the entire text is chunked.
This method helps maintain the semantic integrity
of the original texts. Other methods, such as intro-
ducing overlap between chunks, can also benefit
E2LLM. Our experiments in Appendix J.2 indicate
that chunk size can influence performance. Includ-
ing excessive context within a single chunk can
degrade performance because a high compression
ratio may render the embedding vector too generic,
compromising specificity. Conversely, using exces-
sively small chunk sizes can disrupt the semantic
integrity of sentences, negatively impacting perfor-
mance. Furthermore, we highlight that the impact
of the chunker in E2LLM is less pronounced
when aligning the encoder and decoder, as in-
troduced in the sequel. In contrast to RAG, where
the retriever (encoder) and the generator (decoder)
are two distinct models without alignment, E2LLM
benefits from this cohesion. This alignment mini-
mizes the risk of inconsistency in text interpreta-
tion, which can arise when models are pretrained
on different corpora and objectives. More discus-
sions on chunk size is provided in Appendix J.2.

Text Encoder E: After chunking, each chunk is in-
put into the text encoder. Pre-trained encoders,
such as GTE (Li et al., 2023) and BGE (Xiao
et al., 2023), are typically trained using contrastive
learning, allowing the [CLS] token to serve as the
embedding vector. However, this token primarily
captures the discriminative features necessary for
differentiating between chunks and often neglects
valuable information that could benefit the LLM
decoder when generating responses. To address
this limitation, we do not rely on the [CLS] token
as the direct chunk embedding. Instead, we extract
the token-level embeddings produced by the en-
coder and pass them into a subsequent adapter for
aggregation. Additionally, we implement low-rank
adaptation (LoRA) (Hu et al., 2021) to enable fine-
tuning of the text encoder during the alignment
process. These strategies enhance the encoder’s
ability to retain and extract more relevant informa-
tion from the original text in each chunk, ultimately
improving the performance of the LLM.

Adapter A: To facilitate the LLM’s understanding
of the chunk-wise semantics derived from the en-
coder’s output, we introduce an adapter that serves
two primary functions: (i) to compress the en-
coder’s outputs into a single chunk token, and (ii)
to project this token into the input embedding space
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Figure 2: The E2LLM architecture.

of the LLM. To achieve these objectives, we pro-
pose a variant of Pooling by Multihead Attention
(vPMA) (Lee et al., 2019), that is,

c = vPMA(X) = LN(h+ FFN(h)), (1)

h = LN(MHA(q,K,V) + q), (2)

K = XWK , V = XWV , (3)

where LN, FFN, and MHA respectively denotes
layer normalization, row-wise feedforward net-
work, and multihead attention. In this formu-
lation, X ∈ RC×denc represents the token-level
embeddings with length C and dimension denc
given by the text encoder for a specific chunk,
q ∈ R1×ddec represents the learnable query or
seed vector with length 1 and dimension ddec, and
WK ,WV ∈ Rdenc×ddec are the projection matrices.

By computing the multihead attention MHA be-
tween q and K, we simultaneously compress all
token-level embeddings into a single chunk token
c ∈ R1×ddec , while also mapping the dimensions
from the encoder (denc) to the decoder (ddec). The
resulting token c for this chunk is referred to as
the chunk token or soft prompt. Note that the
original PMA does not alter the dimensions, so we
adjust q to ensure effective alignment between the
encoder and decoder dimensions.

LLM Decoder D: Finally, we concatenate the
chunk tokens (the green tokens in Figure 2) and
the text tokens corresponding to the prompt and
query, and ask the LLM to generate the answer for
the query. Additionally, we employ LoRA to fine-
tune the Decoder as part of the alignment process
between the encoder and decoder.

2.2 Training Tasks

Now we focus on training the the adapter as well
as the LoRA branch of the encoder and the decoder
to enhance the E2LLM’s ability to comprehend
lengthy input contexts and effectively reason about
the corresponding answers. To accomplish this, we
introduce two distinct training tasks.

Understanding: The first task is designed to im-
prove the LLM’s understanding of the input. As
depicted in Figure 2, once the LLM receives chunk
tokens from the adapter, we prompt it to restate or
reconstruct the input. We refer to this as the “under-
standing” task. The specific prompt used is “Given
the contexts: [chunk token]\n Please follow the
instruction:\nRestate the aforementioned context”.

Notably, this task is self-supervised, allowing us
to curate a significant amount of training data to
ensure that the LLM comprehensively grasps the
embeddings provided by the adapter. However, in
our experiments, we utilize only the input from
long-context instruction fine-tuning data for this
task. Given that these inputs are often too lengthy
to be fully reconstructed at once, we employ a slid-
ing window approach, reconstructing the original
context in segments based on a few consecutive
chunks until the entire input has been restated.

Reasoning: On the other hand, the second training
task enables the LLM to generate answers based
on the chunk tokens (i.e., the long context) and the
user’s query. We refer to this as the “reasoning”
task, and the prompt crafted for this purpose is
“Given the contexts: [chunk token]\n Please follow
the instruction: \n Answer the question: {query}”.

It is important to note that the “understanding”
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task serves as an auxiliary task, while our primary
focus remains on the “reasoning” task. We deter-
mine the final checkpoints exclusively based on the
validation loss associated with the “reasoning” task.
In this context, we do not anticipate that E2LLM
can achieve lossless compression of the context.
However, we believe that the LLM decoder is ca-
pable of retaining or comprehending essential in-
formation from the context. The LLM operates as
a “suggestion feature” for input methods, leverag-
ing hints to generate meaningful responses. In this
case, the chunk tokens provided by the text encoder
serve as these essential hints.

2.3 Remarks

Relations to Other Works: For a detailed dis-
cussion on the relationship between E2LLM and
other methods such as vision-language models
(VLMs), retrieval-augmented generation (RAG),
and Transformers-based architectures, please refer
to Appendix C.

Maximum Context Window: Theoretically, the
maximum sequence length of E2LLM equals the
product of the encoder and decoder’s sequence
lengths. However, as previously mentioned, setting
the chunk size to match the encoder’s sequence
length presents challenges, as it may hinder the
encoder’s ability to retain all pertinent information
within a single chunk. Thus, we need to choose a
proper chunk size. As a result, the practical length
of E2LLM is determined to be the chunk size mul-
tiplied by the sequence length of the LLM’s de-
coder. In actuality, we set the maximum chunk size
of 512 characters, which is approximately equiva-
lent to 100 tokens. Hence, the context length has
been expanded by nearly 100 times. When using
Llama2-7B-chat as the decoder with a sequence
length of 4K tokens, the final context window of
E2LLM reaches approximately 400K.

Time and Space Complexity during Inference:
Let us denote the original context length (exclud-
ing the prompt or instruction) as L and the chunk
size in E2LLM as C. Therefore, the total num-
ber of chunks becomes L/C. For each chunk,
the resulting time and space complexity from the
text encoder is O(C2). Given that there are L/C
chunks, the overall complexity for the encoding
step is O(CL). In practice, since all chunks can be
processed in parallel, the time complexity can be
further reduced by a constant factor. Subsequently,
we pass the L/C chunk tokens to the LLM de-

coder, which yields a complexity of O(L2/C2). In
summary, the total time and space complexity is
O(LC + L2/C2). To substantiate the efficiency
of E2LLM during inference, we conduct empirical
experiments that assess both inference time and
memory usage (cf. Section 3.4). Moreover, we
provide a discussion on the complexity of existing
SOTA methods in Appendix D.

3 Experiments

In this section, we present a comprehensive evalua-
tion of E2LLM. We begin by assessing its perfor-
mance on two fundamental tasks: document sum-
marization and QA. We then extend our evaluation
to the recently proposed LongBench v2, a challeng-
ing benchmark that tests deep understanding and
reasoning capabilities across real-world multitask
scenarios. Additionally, we explore whether in-
tegrating retrieval mechanisms with E2LLM can
further enhance its performance across different
tasks. Finally, we analyze E2LLM’s training and
inference efficiency and conduct ablation studies
to gain deeper insights into its components. Sup-
plementary results on additional benchmark, Ruler,
can be found in Appendix H.

3.1 Document summarization and QA

We begin by evaluating E2LLM’s performance on
two fundamental long-context tasks: document
summarization and QA. For summarization, we
utilize QMSum and GovReport datasets, while for
QA, we employ Quality, NarrativeQA, and Triv-
iaQA datasets. Detailed dataset characteristics
can be found in Appendix E.1 and Table 6. No-
tably, Quality and TriviaQA have relatively shorter
lengths compared to the summarization datasets,
while NarrativeQA is significantly longer.

For comparison, we benchmark E2LLM against
8 baselines. These include length extension tech-
niques such as YaRN (Peng et al., 2023) and
CEPE (Yen et al., 2024), sparse attention strate-
gies like StreamingLLM (Xiao et al., 2024) and
LongLoRA (Chen et al., 2023b), as well as hard
and soft prompt compression methods including
RAG (Gao et al., 2024b), LongLLMLingua (Jiang
et al., 2023b), and LLoCO (Tan et al., 2024). All
baselines are built upon the same foundation model,
Llama2-7B-chat, with CEPE and LLoCO having
been continually pre-trained on this model using
large corpora. We also include the original Llama2-
7B-chat as an additional baseline. An overview of
these methods is provided in Appendix B.
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Table 1: Performance on Long-Context datasets. The best results are in bold, the second are underlined, and the
third are

::::
wavy

::::::::::
underlined.

Methods
Trainable

Parameters

Context

Window

Extension

Method

QMSum GovReport Quality NarrativeQA TriviaQA

G-mean↑ PPL↓ G-mean↑ PPL↓ F1↑ PPL↓ F1↑ PPL↓ F1↑ PPL↓

Llama2-7B-chat 0M 4K - 11.51 84.92 5.50 9.04 9.38 1,688.10 4.65 2,111.23 12.06 1,956.51

StreamingLLM 0M 4M Sparse Attn. 3.62 220.12 4.51 330.54 2.00 230.72 OOM OOM 14.53 596.87

LongLoRA 140M 100K Sparse Attn. 8.98 14.48 16.35 2.88 7.65 381.32 OOM OOM 19.69 438.25

CEPE 1.31B 128k Len. Exten. 10.77 154.16 4.82 52.32 2.33 1,192.35 OOM OOM - -

YaRN 17M 64K Len. Exten.
:::::
12.31

:::::
16.22 6.72

::::
2.94 13.80

:::::
31.32 OOM OOM

:::::
20.22 106.43

RAG 0M +∞ Hard Comp. 12.17 17.21
:::::
14.45 5.88 4.85 125.49

::::
5.03 48.42 11.15 98.96

LongLLMLingua 0M 40K Hard Comp. 8.93 17.55 4.56 23.53 10.89 51.91 4.53
:::::
31.36 14.01

:::::
76.06

LLoCO 17M 128K Soft Comp. 12.99 46.32 5.73 6.42 14.37 9.44 10.87 16.88 63.21 10.80

E2LLM 11M 400K Soft Comp. 15.47 13.66 18.43 2.81
:::::
12.95 8.99 12.47 13.07 38.57 7.53

* For complete experimental results with more metrics, please refer to Table 7 in Appendix E.4.

For our experiments, we train E2LLM and other
training-dependent baselines separately for each
dataset. We use the original validation sets for
testing, while splitting the original training sets
into training and validation subsets with a 95:5
ratio. For summarization, we use the geometric
mean (G-mean) of Rouge metrics, which com-
pare n-gram overlap between generated and ref-
erence texts. For QA, we calculate the F1 score
based on unigram overlap between generated and
reference answers. We also compute perplexity
(PPL) of the correct answer across all datasets as
a semantic-level metric to assess model prediction
accuracy. Detailed metric descriptions are avail-
able in Appendix E.2. The results are presented
in Table 1. Below, we analyze the performance of
each group of methods2:
Soft prompt compression: E2LLM typically out-
performs all methods, across all datasets and met-
rics. While LLoCO also performs well in QA tasks,
it shows limitations in summarization. This limi-
tation stems from LLoCO’s use of AutoCompres-
sor (Chevalier et al., 2023), where the chunk tokens
only retain information necessary for subsequent
chunks prediction. This approach, while effective
for QA where selective context is sufficient, proves
inadequate for summarization tasks requiring com-
prehensive context understanding. E2LLM over-
comes this limitation by directly utilizing chunk
tokens for various tasks rather than focusing on
next-chunk prediction.
Hard prompt compression: Both LongLLMLin-
gua and RAG underperform in Document summa-
rization and QA tasks. Their drawbacks arise from
(i) potential inconsistencies between retriever and

2A more detailed discussion can be found in Appendix E.4

generator interpretations and (ii) the selective use
of document chunks. LongLLMLingua is further
hampered by (i) insufficient token count for full
chunk summarization and (ii) a non-consecutive to-
ken selection process that impairs LLM comprehen-
sion. E2LLM tackles these problems by aligning
its encoder and decoder and utilizing all available
document chunks as input.
Sparse attention: LongLoRA shows strength in
summarization but weakness in QA tasks, due to
its shift shot attention mechanism. While benefi-
cial for global information flow in summarization,
the sparse attention mask limits information ex-
change between arbitrary tokens, potentially miss-
ing crucial context in QA tasks. StreamingLLM’s
training-free approach with a Λ-shaped attention
mask further restricts information flow, leading to
suboptimal performance. E2LLM maintains su-
perior performance by using full attention with
effective passage compression.
Length extension: YaRN achieves balanced per-
formance across tasks but falls short of E2LLM due
to attention dispersion (e.g., “lost in the middle”) in
long contexts (Liu et al., 2024b). CEPE faces simi-
lar challenges, compounded by insufficient training
data for its cross-attention layers (adapter) and ar-
chitectural limitations in handling varying context
lengths. E2LLM avoids these issues by not extend-
ing the decoder’s original length but training it to
effectively interpret encoder-encoded soft prompts.

3.2 LongBench v2

To further our method, we utilize the recently
released LongBench v2 benchmark (Bai et al.,
2024b), recognized for its broad scope and diffi-
culty. It consists of 503 multiple-choice questions
with contexts ranging from 8K to 2M words, span-
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Table 2: Performance comparison in terms of accuracy
on LongBench v2 (w/o COT).

Model Size Overall Easy Hard Short Medium Long Rank

o1-mini - 37.8 38.9 37.1 48.6 33.3 28.6 14
Mistral Large 123B 34.4 38.0 32.2 41.7 30.7 29.6 15
E2LLM-7B 7B 31.8 33.3 30.9 37.8 28.4 28.7 -
Llama3.1-70B 70B 31.6 32.3 31.2 41.1 27.4 24.1 16
Nemotron-70B 70B 31.0 32.8 29.9 38.3 27.9 25.0 17
Qwen2.5-7B-ft 7B 31.2 31.3 31.2 39.4 27.0 25.9 -
NExtLong-8B 8B 30.8 33.9 28.9 37.8 27.4 25.9 18
GLM-4-9B 9B 30.2 30.7 29.9 33.9 29.8 25.0 19
Llama3.1-8B 8B 30.0 30.7 29.6 35.0 27.9 25.9 20
Qwen2.5-7B 7B 30.0 30.7 29.6 40.6 24.2 24.1 21
Llama3.3-70B 70B 29.8 34.4 27.0 36.7 27.0 24.1 22
GPT-4o mini - 29.3 31.1 28.2 31.8 28.6 26.2 23
LLoCO 7B 28.2 30.2 26.0 36.8 24.2 21.5 -
Command R+ 104B 27.8 30.2 26.4 36.7 23.7 21.3 24
Mistral Large 2 123B 26.6 29.7 24.8 37.8 19.5 22.2 25

ning 6 major tasks: single-document QA, multi-
document QA, long in-context learning, long dia-
logue history understanding, code repository un-
derstanding, and long structured data understand-
ing. Edited by nearly 100 professionals from di-
verse backgrounds, the benchmark’s difficulty is
evidenced by human experts achieving only 53.7%
accuracy within a 15-minute time limit per ques-
tion. More details are available in Appendix F.

Instead of assessing the baseline models from
the previous section, we compare E2LLM directly
with the models on the leaderboard to demonstrate
its practicality. Specifically, we utilize GTE-large-
en as the encoder, and Qwen2.5-7B-Instruct as the
decoder. We combine the training data used in the
previous section, resulting in about 13,000 sam-
ples for encoder-decoder alignment. While the
training data focuses on document QA and sum-
marization, the benchmark encompasses a broader
range of tasks. To ensure E2LLM’s generalizabil-
ity, we employ the SDFT method from (Yang et al.,
2024b), prompting the original decoder to generate
answers for these training samples based on ref-
erence answers, thus mitigating the issue of catas-
trophic forgetting. The resulting model is referred
to as E2LLM-7B. For comparison, we fine-tune
the original Qwen2.5-7B-Instruct using the same
training data, resulting in Qwen2.5-7B-ft. The re-
sults are summarized in Table 2. Additionally, to
demonstrate the efficiency of E2LLM, we compare
E2LLM-7B with Qwen2.5-7B-ft in terms of infer-
ence time, as shown in Table 3.

The results show that E2LLM demonstrates
strong capabilities and efficiency in long-context
modeling: (i) Overall Performance: E2LLM

Table 3: Time cost (in seconds) comparison on Long-
Bench v2.

Model Framework Short Medium Long

Llama3.1-8B
Transformers 8.50s OOM OOM

vLLM 5.85s 24.92s 34.48s

GLM4-9B
Transformers 10.51s OOM OOM

vLLM 5.89s 26.36s 35.03s

Qwen2.5-7B-ft
Transformers 7.13s OOM OOM

vLLM 5.75s 24.67s 34.31s

LLoCO-7B Transformers 5.89s 15.96s 68.42s

E2LLM-7B Transformers 4.15s 12.71s 46.28s

Table 4: Performance gains resulting for different tasks
from augmenting E2LLM with RAG.

Task Type Doc. Sum. Doc. QA LB v2 NIAH

Metric G-mean F1 ACC ACC

E2LLM-C 16.95 21.33 31.80 2.60
E2LLM-R 13.15 24.24 31.90 55.45
E2LLM-C+R 16.49 22.70 31.80 55.84

ranks 16th on the leaderboard, outperforming
all similarly-sized models, including the recent
NExtLong-8B (Gao et al., 2025). It achieves rel-
ative gains of 6.00% and 1.92% over Qwen2.5-
7B-Instruct and Qwen2.5-7B-ft respectively, while
surpassing larger models like Llama3.1-70B and
Nemotron-70B. (ii) Extreme Long-context Han-
dling: E2LLM-7B excels in the “Long” category
(with 128K-2M words), achieving a 19.09% rel-
ative improvement over Qwen2.5-7B-Instruct
and outperforming o1-mini. (iii) Inference Effi-
ciency: E2LLM reduces inference time by 41.8%
compared to original Qwen in the “Short” cate-
gory when both use the Transformer framework.
Notably, E2LLM remains faster than Qwen, even
when the former uses the slower Transformer
framework while the latter employs the faster
vLLM, across “short” and “medium” datasets.
In summary, by leveraging the strengths of pre-
trained encoder and decoder, E2LLM achieves
high accuracy and low inference time concur-
rently through parameter-efficient fine-tuning
with just 13K samples, effectively addressing the
“impossible triangle” illustrated in Figure 1.

3.3 Augmentation with Retrieval

This section investigates the performance gains
of augmenting E2LLM with RAG across various
tasks. Our RAG implementation retrieves the top-
K most relevant chunks to a user query. The LLM
decoder then receives both the text of these re-
trieved chunks and the chunk tokens representing
the unselected chunks to generate a response. We

19219



YaRN LongLoRA CEPE LLoCO E2LLM
Methods

104

105

106

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t 

(T
ps

)

15469.21 16002.35

180291.84

318221.83

46982.97

YaRN
LongLoRA
CEPE
LLoCO
E2LLM

(a) Training Throughput (Tps).

1 13 25 37 49 61 73
Sequence Length(K)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Ti
m

e 
Co

st
(s

)

LongLoRA
YaRN
RAG
LLoCO
CEPE
StreamingLLM
LongLLMLingua
E2LLM

(b) Inference Time (s).

1 13 25 37 49 61 73
Sequence Length(K)

-1

0

1

2

3

4

5

6

Lo
g 

of
 M

em
or

y 
U

sa
ge

(G
B)

LongLoRA
YaRN
RAG
LLoCO

CEPE
StreamingLLM
LongLLMLingua
E2LLM

(c) Inference Memory (GB).

Figure 3: Comparison of all methods on training and inference efficiency.

evaluate this approach on document summarization
and QA in Section 3.1, all tasks in LongBench v2
(which feature more complex QA than the docu-
ment QA in Section 3.1), and the diverse Needle-in-
a-Haystack (NIAH) tests within the Ruler bench-
mark (Hsieh et al., 2024), designed to evaluate
LLM recall capabilities. Performance metrics are
averaged across datasets within each task. To as-
sess the relative importance of chunk tokens and
retrieved text, we compare E2LLM with retrieval
(E2LLM-C+R) to the original E2LLM using only
chunk tokens (E2LLM-C) and E2LLM relying
solely on retrieved texts (E2LLM-R). Results are
presented in Table 4.

We observe that RAG significantly improves
E2LLM performance on the NIAH task, likely
due to the task’s need for fine-grained, token-
level recall—a capability E2LLM-C, retaining only
semantic-level chunk information, lacks. How-
ever, for summarization and QA, E2LLM-C+R per-
forms comparably to E2LLM-C. In fact, E2LLM-
C+R slightly degrades summarization performance,
possibly due to noise introduced by retrieved text.
Since summarization and QA are more common in
real-world applications than synthetic NIAH tasks,
E2LLM-C remains a practical and efficient tool
for long-context modeling. For applications where
fine-grained retrieval is paramount, augmenting
E2LLM with RAG is a valuable solution.

3.4 Training and Inference Efficiency

We only present the conclusions here due to page
limits; further discussions are in Appendix I.

Training Throughput: Evaluation on eight A100
GPUs shows that CEPE, LLoCO, and E2LLM
achieve significantly higher training throughput
compared to YaRN and LongLoRA (Figure 3a).
LLoCO’s efficiency stems from offline chunk token
preparation, while CEPE benefits from linear scal-
ing of its cross-attention layer with context length.

Inference Time and Memory: E2LLM achieves
the lowest runtime and memory usage, particu-
larly for 73K-length sequences (Figures 3b and
3c). This efficiency is attributed to its high com-
pression ratio (approximately 100x) compared to
LLoCO’s 32x, significantly reducing decoder token
processing. Runtime behavior across all methods
aligns with theoretical complexity (Table 5).

3.5 Ablation Study

Again, we only provide the key findings here, with
details in Appendix J. (i) Understanding” loss and
LoRA training for both encoder and decoder are
essential. (ii) vPMA-based adapter outperforms
MLP-based alternatives in chunk aggregation and
encoder-decoder alignment. (iii) Incorporating
overlap between chunks improves performance.
(iv) E2LLM benefits from stronger encoders
and decoders, implying that advances in open-
source models can be leveraged. (v) We check
E2LLM’s sensitivity to hyperparameters, including
the weight of the understanding” loss, the rank of
LoRA for both encoder and decoder, and the head
number in vPMA. Each factor has an optimal value.
(vi) Varying chunk size has relatively small impact
on performance (Table 14), suggesting the align-
ment process in E2LLM effectively mitigates its
influence. Still, selecting an optimal chunk size can
lead to slight gains.

4 Conclusion
In this paper, we present E2LLM, a novel approach
to address the challenges of enhancing long-context
performance in LLMs. It effectively navigates the
“impossible triangle” by strategically splitting long
contexts into chunks, compressing them into em-
bedding vectors, and utilizing an adapter to align
these representations with a decoder-only LLM.
Two training objectives are employed to facilitate
the understanding of soft prompts by the LLMs, re-
sulting in superior performance in long-context sce-
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narios. Experimental findings reveal that E2LLM
effectively outperforms existing approaches in bal-
ancing the long-context performance, computa-
tional efficiency, and model compatibility. We
believe that E2LLM offers a flexible framework
for aligning text encoders and LLM decoders, with
considerable potential for enhancement as more
powerful chunkers, encoders, adapters, and de-
coders become available.

Limitations

Despite E2LLM’s strong performance with data-
efficient fine-tuning, collecting high-quality long-
context fine-tuning data presents practical chal-
lenges. Thus, it is worthwhile to explore whether
E2LLM can maintain its effectiveness with con-
tinued pretraining, and whether long-context data
can be synthesized from existing short-context data
using LLMs. Furthermore, although E2LLM is not
highly sensitive to chunk size, selecting the opti-
mal size can enhance its effectiveness, as shown
in Table 14. In addition, due to the inherent in-
formation loss during compression, critical details
may occasionally be misrepresented, inadvertently
filtering or distorting sensitive content and poten-
tially amplifying biases. In future work, we aim
to investigate more flexible and learnable chunk-
ing mechanisms, while also paying closer attention
to mitigating societal and privacy risks introduced
during the compression process.
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A Related Works

As aforementioned, prevalent methods can be cate-
gorized into three groups: modifying the position
embedding (i.e., length extension), the attention
mechanism (i.e., sparse attention), and the input
sequence (i.e., prompt compression).

Length Extension: Training LLMs on sequences
with limited maximum sequence lengths while
ensuring generalization for longer sequences is
challenging. To address this, positional extrapo-
lation and interpolation methods have been pro-
posed. Positional extrapolation extends positional
encoding beyond the training length; for instance,
ALiBi (Press et al., 2021) enhances attention with
linear biases that adjust scores based on the dis-
tance between key and query positions. Instead,
xPOS (Sun et al., 2023) utilizes relative position
embeddings for better attention resolution and ex-
tended lengths. Another approach, CLEX (Chen
et al., 2024a), replaces manual design with learned
scaling factors through neural differential equa-
tions, effectively overcoming the limitations in-
herent in traditional positional extrapolation tech-
niques. Positional interpolation, on the other hand,
scales down input position indices and expands
context windows to maintain performance across
longer sequences. For example, Chen et al. (2023a)
applies linear interpolation to RoPE to align maxi-
mum position indices with pre-training constraints.
NTK interpolation (bloc97., 2023) modifies the
base of RoPE to adjust the rotational velocity of
its dimensions. To combine the strengths of these
approaches, YaRN (Peng et al., 2023) integrates
linear and NTK interpolation with tailored extrapo-
lation strategies, mitigating distribution shifts in
the attention matrix with longer inputs. Reso-
nanceRoPE (Wang et al., 2024b) also targets re-
ducing feature interpolation for out-of-distribution
positions. LongRoPE (Ding et al., 2024a) further
enhances performance by exploiting two forms of
non-uniformities in RoPE positional embedding
via an efficient evolutionary search. Besides mod-
ifying position embeddings, length extension can
also be achieved by employing external memory for
long contexts. CEPE (Yen et al., 2024) adheres to
the original Transformer architecture, using an en-
coder to process lengthy contexts chunk by chunk.
The embeddings of tokens within each chunk given
by the encoder are subsequently fed into the LLM
through trainable cross-attention layers.

Despite these advancements, most approaches
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require continual pre-training or fine-tuning to
achieve the desired length (Zhao et al., 2024; Gao
et al., 2024a), thus entailing a considerable training
burden. Additionally, inference on these extended
models can be slow due to the quadratic complexity
of full attention. In contrast, the proposed E2LLM
does not alter the original LLM’s length but com-
presses the input sequence into chunks of embed-
ding vectors. This allows E2LLM to maintain the
efficiency of the original LLM during both training
and inference.

Sparse Attention: This category of methods
aims to decrease the inference complexity of LLMs
by manipulating attention mechanisms with novel
attention masks, enabling these models to handle
longer sequences. StreamingLLM (Xiao et al.,
2024) demonstrates that focusing on the beginning
of the sequence and the most recent tokens within
a defined window (i.e., local attention) during infer-
ence maintains performance while significantly re-
ducing computational costs to a linear scale. How-
ever, these training-free methods often fall short in
various scenarios (Anagnostidis et al., 2023; Lou
et al., 2024), as they may neglect informative to-
kens situated in the middle of the sequence. To im-
prove performance, LM-Infinite (Han et al., 2024)
reintroduces top-k tokens from the middle, but this
approach necessitates the computation of all at-
tention scores, thereby increasing computational
demands. As a solution, Lou et al. (2024) propose
SparseK attention, which employs an additional
scoring network to assess the importance of each
key-value pair and select the top-k pairs. Alter-
natively, LongLoRA (Chen et al., 2023a) utilizes
shifted sparse attention (a variant of local atten-
tion) and fine-tunes LLMs with LoRA (Hu et al.,
2021) to adapt to this mechanism. Unfortunately,
as noted by (Tan et al., 2024), there remains a signif-
icant gap between sparse and full attention, which
complicates the fine-tuning of pre-trained LLMs to
new attention paradigms. In contrast, the E2LLM
approach summarizes long-context input into soft
prompt vectors, thereby reducing context length
without altering the full attention mechanism in
LLMs.

Prompt Compression: Prompt compression en-
hances the efficiency of LLM input processing by
either condensing lengthy prompts (hard prompt
compression) or learning compact prompt represen-
tations (soft prompt compression). Hard prompt
compression techniques include RAG (Ding et al.,

2024b), LLMlingua (Jiang et al., 2023a), Selective-
Context (Li, 2023), and LongLLMLingua (Jiang
et al., 2023b). RAG optimizes input by retrieving
only the passages relevant to the query, while LLM-
lingua and Selective-Context focus on compressing
extensive context without referencing the query.
LongLLMLingua integrates these strategies by uti-
lizing question-aware coarse-to-fine compression
to enhance performance. However, these methods
separate compression and inference into distinct
steps, leading to potential error propagation that de-
grades performance. In contrast, E2LLM is trained
end-to-end, effectively mitigating the above issue.

Soft prompt compression, proposed by Mu et al.
(2023) and Ge et al. (2023), involves training LLMs
to distill prompts into a more concise set of tokens
that encapsulate the original prompt’s knowledge
for future use. Chevalier et al. (2023) extend this
by developing AutoCompressor, which converts
longer textual contexts into summary vectors that
serve as soft prompts, which expands the LLM’s
context window and reduces computational costs,
as examplified in LLoCO (Tan et al., 2024). How-
ever, directly using LLMs to generate sentence-
level embeddings diverges from their original ob-
jective of next-token prediction. As a result, achiev-
ing satisfactory performance in this context often
requires extensive training or fine-tuning to align
the model with the new objective. To overcome
this problem, our E2LLM leverages a pretrained
sentence embedding model to represent prompts,
aligning with the original training objectives of
embedding models. Additionally, we note that,
concurrently with our work, FocusLLM (Li et al.,
2024b) has also adopted a strategy of chunking
long contexts and summarizing each chunk using
the hidden states of the local context from all lay-
ers of an LLM. These hidden states are concate-
nated to serve as the key-value cache for the same
LLM, providing answers to user queries. From the
perspective of E2LLM, FocusLLM essentially em-
ploys an LLM as a text encoder, which influences
both training and inference efficiency.

B Overiew of Baseline Methods

The following provides a brief overview of all base-
lines:

• Llama2-7B-chat (Touvron et al., 2023): This
refers to the original Llama2-7b-chat3 without

3https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf
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additional training or fine-tuning, serving as the
backbone for the other methods.

• YaRN (Peng et al., 2023): YaRN is a position
interpolation method designed to effectively ex-
tend the context window of models trained with
Rotary Position Embeddings (RoPE) (Su et al.,
2024). This method leverages the advantages of
both linear and NTK interpolation. Note that the
computational complexity of YaRN is quadratic
in the context length during both training and
inferece. We implement a scale factor of 16 and
integrate LoRA (Hu et al., 2021) into the self-
attention module, utilizing a rank of 16. This
results in a total of 17 million trainable parame-
ters.

• CEPE (Yen et al., 2024): CEPE employs an
encoder-decoder framework designed to effi-
ciently manage long contexts by breaking them
into manageable chunks. The encoder gener-
ates embeddings for each token within these
chunks, which are then fed into the LLM de-
coder via cross-attention, in line with the original
Transformer architecture. We use LLaMA-MLM-
Large4 as the encoder, with a total of 1.31B train-
able parameters. During the warm-up stage, we
train the cross-attention mechanism from scratch,
followed by simultaneous training of both the en-
coder and cross-attention in the standard training
phase. It is important to note that CEPE only
presents a pretraining approach where the en-
coder initially processes a fixed-length segment
of a sequence. This processed portion is then
used to predict the remainder of the sequence for
the decoder, functioning as a text completion task.
In instances where a sequence is shorter than the
predefined length of the encoder, the decoder is
not provided with any input, which limits training
flexibility. Unlike traditional Transformer fine-
tuning, where the prompt and response are re-
spectively inserted into the encoder and decoder,
CEPE operates differently and does not support
this method.

• StreamingLLM (Xiao et al., 2024): These ap-
proaches are training-free and utilize a Λ-shaped
sparse attention mask, allowing tokens to only at-
tend to the beginning of the sequence and recent
tokens within a defined window. In our imple-
mentation of StreamingLLM, we set the start size
at 4, while the recent size was set to 2000.

4https://huggingface.co/hyen/LLaMA-MLM-Large

• LongLoRA (Chen et al., 2023b): This method
utilizes shifted short attention instead of full at-
tention during training and incorporates Position
Interpolation (Chen et al., 2023a) and LoRA for
fine-tuning an LLM to extend its context window.
During inference, it reverts to full attention rather
than sparse attention. We set the LoRA rank to
16 and fine-tune the self-attention, embeddings,
and normalization modules, resulting in 140M
trainable parameters.

• RAG (Gao et al., 2024b): RAG operates with two
core processes: retrieval and generation. During
the retrieval phase, we adopt GTE-large-en (Li
et al., 2023) as the retriever to recall the top-30
relevant context chunks, each with a maximum
length of 512 characters, based on cosine similar-
ity. These context chunks then serve as prompts
for the LLM during the generation phase. No-
tably, RAG is training-free, offering flexibility
in its application. However, it is essential to ac-
knowledge that the retriever and the generator
are distinct models trained on different corpora
and with different objectives, which may lead to
inconsistent interpretations of the same text (Li
et al., 2024a; Ding et al., 2024b).

• LongLLMLingua (Jiang et al., 2023b): This
method builds upon the framework established
by LLMLingua (Jiang et al., 2023a) with the goal
of identifying and removing non-essential tokens
from prompts. This method begins by selecting
passages, denoted as xpassage, that are relevant to
the user query xquery and that maximize the con-
ditional probability p(xpassage|xquery). To achieve
this, it utilizes an LLM, specifically the quantized
Llama-7B-GPTQ, as a cross-encoder to rank the
pairwise relevance of passages. It is important to
note that cross-encoders tend to be significantly
more computationally demanding than the bi-
encoder retriever typically employed in RAG, al-
though they offer higher accuracy. Once the rele-
vant passages are identified, the method proceeds
to select the most pertinent tokens xi from each
passage, aiming to maximize the difference in
perplexity: PPL(xi|x<i) − PPL(xi|xquery, x<i).
This process is also facilitated by the LLM. Ulti-
mately, the selected tokens, limited to a total of
3000, are provided to the LLM to formulate an
answer to the query. Note that the selected tokens
may be non-consecutive, which can complicate
the LLM’s understanding of their semantic mean-
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ing.

• LLoCO (Tan et al., 2024): LLoCO utilizes Au-
tocompressors (Chevalier et al., 2023) to encode
long context offline into summary vectors or
soft prompts. LLoCO omits the adapter used
in E2LLM since its decoder is the same LLM
(i.e., LLama2-7B-chat) as in the encoder Auto-
Compressor. As a result, the decoder can ef-
fectively understand the summary vectors gener-
ated by AutoCompressor after being fine-tuned
with LoRA. One advantage of LLoCO is that
its text encoder, AutoCompressor, considers the
interdependencies of long-context chunks autore-
gressively. However, this also presents a limi-
tation: the long context can only be processed
sequentially, one chunk after another. By con-
trast, E2LLM can process all chunks in parallel
and is more suitable for long context. Consistent
with other methods, we employ LoRA on self-
attention module with a rank of 16, resulting in
the number of trainable parameters to be 17M.

C Relation to Other Methods

C.1 Relation to Vision-Language Models
E2LLM draws inspiration from recent advance-
ments in Vision-Language Models (VLMs), includ-
ing mini-GPT4 (Zhu et al., 2024), LLaVA (Liu
et al., 2024a), Qwen-VL (Wang et al., 2024a), and
InternVL (Chen et al., 2024b). These VLMs uti-
lize adapters to align pretrained vision encoders
with LLM decoders, enabling the LLMs to pro-
cess image tokens outputted by the encoders. This
approach leverages the strengths of independently
pre-trained vision and language models, offering
a flexible way to build high-performing systems.
Notably, VLMs excel at performing OCR (Opti-
cal Character Recognition) (Islam et al., 2017),
effectively recognizing and outputting text present
within images. Motivated by the success of VLMs,
we propose that by aligning text encoders with
LLM decoders using an adapter, LLMs can sim-
ilarly interpret encoded sentences and perform
inference. As both encoder and decoder operate
within the text modality, this alignment process
may be simpler and require less data than the cross-
modal alignment used in VLMs. Furthermore,
E2LLM’s self-supervised reconstruction task al-
lows us to leverage vast amounts of text to enhance
the LLM’s contextual understanding, unlike VLMs
which rely on supervised image-text pairs that are
more difficult to acquire.

C.2 Relation to Retrieval-Augmented
Generation

E2LLM shares a similar high-level structure with
Retrieval-Augmented Generation (RAG), involving
chunking, encoding, and decoding. However, the
interaction between the encoder and decoder differs
fundamentally. RAG retrieves relevant raw text
passages using a pretrained encoder and feeds them
directly into the decoder, relying entirely on textual
inputs. In contrast, E2LLM compresses each chunk
into a summary vector, allowing for more compact
and semantically rich communication.

This design offers several advantages. First,
E2LLM significantly extends context capacity by
representing each chunk with a single vector to-
ken, enabling the decoder to handle thousands of
chunks—far beyond the limitations of RAG’s fixed
context window. Second, E2LLM aligns the en-
coder and decoder through an adapter module, re-
ducing semantic inconsistencies often observed in
RAG due to independent training. Lastly, E2LLM
avoids reliance on sensitive retrieval hyperparam-
eters by learning to reason over all chunks dur-
ing training, making it more robust and generaliz-
able. Notably, as shown in Section 3.3, E2LLM
and RAG can complement each other, combining
precise retrieval with scalable contextual reasoning.

C.3 Relation to Transformer

E2LLM departs from the standard Transformer ar-
chitecture (Vaswani et al., 2017), which was not
originally designed to handle long-context reason-
ing. Unlike Transformers that pass all fine-grained
tokens into the decoder, E2LLM compresses each
chunk into a single chunk token via an encoder,
significantly improving context scalability. More-
over, instead of relying on deep cross-attention
layers between the encoder and decoder, E2LLM
employs a lightweight adapter to align their rep-
resentations. This design improves parameter effi-
ciency while enabling effective information trans-
fer, making E2LLM more suitable for long-context
tasks with limited resources.

D Complexity of Existing Methods

The original Llama2-7B-chat and YaRN rely on
the quadratic time and space complexity inher-
ent to the self-attention mechanism. In contrast,
StreamingLLM modifies the attention strategy to
focus solely on the initial M starting tokens and
N recent tokens, resulting in a linear relationship
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Table 5: Time and space complexity of various meth-
ods. L and C denote the context length and chunk size,
respectively, while M and N respectively represent the
number of initial starting tokens and recent tokens in
StreamingLLM. Additionally, τ represents concurrency.

Methods Time Complexity Space Complexity

Llama2-7B-chat O(L2) O(L2)
StreamingLLM O(L(M +N)) O(L(M +N))

LongLoRA O(L2) O(L2)
CEPE O(L(C/τ + 1/2) + L2/4) O(L(C + 1/2) + L2/4)
YaRN O(L2) O(L2)
RAG O(LC/τ + C2K2) O(LC + C2K2)

LongLLMLingua O(L2) O(L2)
LLoCO O(LC + L2/C2) O(LC + L2/C2)
E2LLM O(LC/τ + L2/C2) O(LC + L2/C2)

between time and space complexity and the con-
text length. Regarding LongLoRA, its inference
process employs a global attention mechanism,
leading to time and space requirements equiva-
lent to those of YaRN and the original Llama2-7B-
chat. CEPE divides the context into two segments,
with the initial portion processed through paral-
lelized embedding, represented in the table by the
constant τ denoting concurrency, the subsequent
self-attention and cross-attention mechanisms ex-
hibit quadratic and linear complexities, respectively.
RAG involves both the embedding and retrieval
processes, establishing a direct correlation with the
chunk size C and the number of retrieved chunks
K. An increase in K results in slower speeds and
greater space consumption, albeit with improved
performance. For LongLLMLingua, it incorporates
question-aware coarse-grained and fine-grained
compression processes, which significantly con-
sume time and space resources during the multiple
computations of perplexity. LLoCO exhibit nearly
identical time complexity to E2LLM, as both in-
volve encoding and decoding processes. However,
it is important to note that while E2LLM’s encod-
ing process shares similarities with the embedding
process of RAG and can be executed concurrently,
LLoCO is constrained by the AutoCompressor,
which operates serially and thus cannot be paral-
lelized. Moreover, the efficiency of both methods
is directly tied to C, E2LLM benefits from high
compatibility and can utilize long-context sentence
embedding models such as BGE, GTE, and Jina-
embedding as encoders, while LLoCO is limited
by the AutoCompressor, restricting the chunk size
range to 0-1536.

Table 6: Dataset Statistics for Long Document Summa-
rization and QA Tasks.

Dataset Task Type #Train. Samp.#Eval. Samp. Len.

QMSum Summarization 1,257 272 14,428.78

GovReport Summarization 10,000 500 11,204.00

Quality DocumentQA 5,046 2,086 6,797.66

NarrativeQA DocumentQA 3,000 200 52,158.88

TriviaQA DocumentQA 10,000 500 1,075.90

E More Details of Document
Summarization and QA Tasks

E.1 Datasets

In order to evaluate the effectiveness of E2LLM, we
leverage five publicly available datasets that encom-
pass both Summarization and Document Question-
Answering (DocumentQA) tasks. The data statis-
tics are shown in Table 6.

• QMSum5 (Zhong et al., 2021) is a newly de-
vised, human-annotated benchmark designed for
the query-based multidomain meeting summa-
rization task. It comprises an extensive range
of query-summary pairs across 232 meetings in
diverse fields. Specifically, we included 1,257
training samples and used 272 samples for infer-
ence. The average length of the samples in this
dataset is 14,428.78 tokens.

• GovReport6 (Huang et al., 2021) contains elon-
gated reports by the U.S. Government Account-
ability Offices and the Congressional Research
Service, complemented by summaries and ab-
stracts hand-written by experts, which is of the
summarization task genre. For training purposes,
10,000 random samples were utilized, and for
inference, 500 samples were arbitrarily selected
from the validation sets. The average length of
the sampled data is 11,204.00 tokens.

• Quality7 (Bowman et al., 2022) is a Documen-
tQA dataset comprising 5,046 training samples
and 2,086 inference samples with contexts that
have an average length of 6,797.66 tokens. Fur-
ther, we convert the original single-choice data
format of the dataset into the QA format.

5https://github.com/Yale-LILY/QMSum
6https://huggingface.co/datasets/ccdv/

govreport-summarization
7https://huggingface.co/datasets/emozilla/

quality
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• NarrativeQA8 (Kovcisky et al., 2018) is another
DocumentQA dataset, primarily extracted from
comprehensive book texts and film scripts from
varied sources. The challenge here lies in gen-
erating concise answers from potentially disor-
dered and lengthier texts. We randomly sample
3,000 pieces of data for training, while randomly
choosing 200 samples for inference. The average
sample length is 52,158.88 tokens.

• TriviaQA9 (Joshi et al., 2017)is also a high-
quality DocumentQA dataset that houses over
650K question-answer-evidence triples. It in-
cludes 95K question-answer pairings authored
by trivia enthusiasts and independently sourced
evidence documents. We selected 10,000 and
500 samples for training and inference respec-
tively, with the average sample length amounting
to 1,075.90 tokens.

E.2 Metrics

For the task of Summarization, the performance
of all methods is measured using the Rouge (Lin,
2004) metric, which operates by comparing the
n-gram of the generated text with that of the ref-
erence text. Specifically, we leverage Rouge-1,
Rouge-2, and Rouge-L to assess the overlap be-
tween the single-token, consecutive dual-tokens,
and the longest common subsequence (LCS) in the
generated text by LLM and the reference text. We
also compute their geometric mean, denoted as G-
mean, and higher values reflect higher quality of
the generated summaries.

Concerning the task of DocumentQA, we adopt
the method demonstrated by (Shaham et al., 2023),
which computes the unigram overlap between the
generated and reference answers. This is accom-
plished by normalizing white-spaces, lower-casing,
excluding stopwords and punctuation. Based on
the number of unigram tokens, in conjunction with
the token quantity of the generated and reference
answers, we calculate precision, recall, and F1.
Again, a higher value indicates a more precise an-
swer by the model.

Overall, G-mean/F1 measures token-level or lex-
ical overlap with the ground truth, while PPL eval-
uates semantic similarity, reflecting the generation
quality from a semantic perspective. Therefore,

8https://github.com/google-deepmind/
narrativeqa

9https://huggingface.co/datasets/mandarjoshi/
trivia_qa

we believe a comprehensive evaluation requires
considering both G-mean/F1 and PPL.

E.3 Implementation Details
We employ the GTE-Large-en model10 as the en-
coder, and Llama2-7B-chat11 as the decoder, with
vPMA acting as the adapter. To ensure a fair com-
parison with CEPE and LLoCO, which both utilize
Llama2-7B-chat as their decoder, we have fixed the
decoder to be the same model. The output dimen-
sion of each attention head in the vPMA is set to
1024, and during chunking, the chunk size is set to
512. For our experiments, we split each dataset into
training and validation sets with a 95:5 ratio, and
perform training and evaluation independently for
each dataset. Two training tasks are used for each
dataset: the “understandin” task and the “reasoning”
task. The weight for the “understanding” task is set
as follows: 1e-7 for the QMSum dataset, 1e-7 for
the GovReport dataset, 1e-9 for the Quality dataset,
1e-7 for the NarrativeQA dataset, and 1e-9 for the
TriviaQA dataset. Both the GTE-Large-en and
Llama2-7B-chat models are fine-tuned using the
LoRA method, with ranks set to 16 and 8, respec-
tively, and alpha values set to 16 and 8. The vPMA
is fine-tuned fully. This configuration results in
a total of 11M trainable parameters. Training is
conducted on 16 A100 GPUs, with a batch size of
12, a learning rate of 1e-4, and a 100-step warm-up
period. Early stopping is applied based on valida-
tion loss. We employ the Accelerate(Gugger et al.,
2022) library and the DeepSpeed distributed frame-
work (Rajbhandari et al., 2020) for training, and
accelerate the training process using FlashAttention
2 (Dao, 2023) along with mixed-precision training
techniques. During inference, all evaluations are
set on a single A100 GPU with 80G memory, and
for each method, we set do_sample=False during
generation and conduct a single run to evaluate the
results.

E.4 Detailed Discussion
The results for all baseline methods in Appendix B
are presented in Table 1. Following this, we now
discuss the outcomes for each category of methods
in detail.

Soft prompt compression: It is apparent that the
proposed E2LLM consistently achieves either

10https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

11https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf
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Table 7: Performance on Long-Context datasets. The best results are in bold, the second are underlined, and the
third are

::::
wavy

::::::::::
underlined.

Methods
Trainable

Parameters

Context

Window

QMSum GovReport Quality NarrativeQA TriviaQA

R1 R2 RL G-mean R1 R2 RL G-mean Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Llama2-7B-chat 0M 4K 21.90 4.91 14.21 11.51 10.68 2.86 5.46 5.50 6.16 25.46 9.38 3.04 13.52 4.65 6.72 76.66 12.06

StreamingLLM 0M 4M 7.59 1.15 5.43 3.62 7.46 3.39 4.76 4.51 1.50 5.50 2.00 OOM OOM OOM 8.43
::::
76.99 14.53

LongLoRA 140M 100K 13.92 4.82 10.79 8.98 27.04 9.92 16.29 16.35 7.41 9.99 7.65 OOM OOM OOM 13.03 49.28 19.69

CEPE 1.31B 128k 19.22 3.66 17.74 10.77 10.53 1.08 9.89 4.82 1.35 29.89 2.33 1.41
::::
21.31 2.19 - - -

YaRN 17M 64K 21.54
::::
5.34 16.24

:::::
12.31 12.93 4.13 5.69 6.72

:::::
13.20 19.42 13.80 OOM OOM OOM

:::::
13.53 49.45

:::::
20.22

RAG 0M +∞
:::::
22.63 5.26 15.14 12.17

:::::
24.92 8.56

:::::
14.15

:::::
14.45 2.81 32.89 4.85 3.12 23.99

::::
5.03 6.23 77.41 11.15

LongLLMLingua 0M 40K 16.42 3.56 12.18 8.93 8.63 2.19 5.20 4.56 9.13
::::
26.34 10.89

::::
5.26 30.78 4.53 5.20 77.33 14.01

LLoCO 17M 128K 23.71 5.51
:::::
16.79 12.99 11.69 3.11 5.18 5.73 16.81 15.03 14.37 11.85 11.34 10.87 64.04 64.03 63.21

E2LLM 11M 400K 25.92 6.70 21.34 15.47 29.14
::::
7.94 27.08 18.43 13.41 15.32

:::::
12.95 13.84 13.61 12.47 38.82 39.43 38.57

the best performance or ranks within the top
three across all nine evaluated methods. The
other soft prompt compression technique, LLoCO,
also demonstrates commendable performance, es-
pecially in QA tasks, highlighting the effective-
ness of soft prompt compression techniques. How-
ever, LLoCO’s performance declines slightly in
summarization tasks, which aligns with observa-
tions in its original publication (see Table 1 in (Tan
et al., 2024)). LLoCO leverages AutoCompres-
sor (Chevalier et al., 2023) as its text encoder, oper-
ating without additional training. AutoCompressor
utilizes Llama2 to generate summary vectors for
each chunk, designed to retain only the information
necessary for subsequent chunks while discarding
other potentially valuable content, as highlighted
by (Rau et al., 2024). In QA tasks, only the relevant
portions of the long context are required to prompt
the LLM for accurate answers, aligning well with
AutoCompressor’s training objectives. In contrast,
summarization tasks necessitate an overall under-
standing of the entire context. Consequently, since
the summary vectors produced by AutoCompres-
sor do not encapsulate all information within each
chunk, LLoCO’s performance in summarization
is adversely affected. Unlike LLoCO, E2LLM di-
rectly leverages the chunk tokens for various tasks
instead of predicting subsequent chunks.

Hard prompt compression: Similar to LLoCO,
the hard prompt compression method LongLLM-
Lingua also excels in Document QA compared to
summarization. The challenge of compressing long
context into 3,000 non-consecutive tokens mani-
fests in two significant ways: (i) the chosen token
count is insufficient for summarizing the full long
context; and (ii) the non-consecutiveness can hin-

der LLM comprehension, potentially leading to
inaccurate answers. Additionally, the performance
of this method is sensitive to hyperparameters, such
as the chunk or passage size, which is crucial when
selecting relevant passages for the query prior to
token selection. These issues are also prevalent in
RAG. Further complicating matters, the bi-encoder
utilized in RAG may not retrieve relevant passages
as effectively as the cross-encoder employed in
LongLLMLingua. Inconsistencies can also arise
when the retriever (encoder) and the generator (de-
coder) interpret the same text, as they are pretrained
on different corpora (Li et al., 2024a; Ding et al.,
2024b). E2LLM addresses these issues by align-
ing the encoder and decoder through the adapter,
which provides a global semantic embedding for
each chunk and allows the decoder to utilize all
chunks as inputs. This approach differs from se-
lectively choosing some tokens from each chunk,
enabling E2LLM to effectively retain relevant infor-
mation and consistently surpass both hard prompt
compression methods.

Sparse attention: On the flip side, the sparse
attention method LongLoRA shows superior per-
formance on summarization tasks but struggles
with QA tasks. This disparity can be attributed
to the shift shot attention mechanism utilized in
LongLoRA, which allows for overlapping attention
blocks and enhances global information flow—an
essential aspect of summarization requiring a holis-
tic view of all tokens. Nevertheless, the sparse
attention mask limits information flow between
two arbitrary tokens. Consequently, when relevant
parts of the long context are inaccessible during
Document QA, LongLoRA may fail to deliver ac-
curate answers due to the loss of vital contextual
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Table 8: Performance as a function of context length. The best results are in bold, the second are underlined, and
the third are

::::
wavy

:::::::::
underlined.

Method QMSum NarrativeQA

Context Length 0K-6K 6K-12K 12K-18K 18K-24K 24K+ 0-24K 24K-48K 48K-72K 72K-96K 96K+
Metric G-mean PPL G-mean PPL G-mean PPL G-mean PPL G-mean PPL F1 PPL F1 PPL F1 PPL F1 PPL F1 PPL

Llama2-7B-chat 13.05 28.57 11.99 85.35 11.54 84.31
:::::
12.56 81.74 10.32 85.60 3.10 75.81 10.71 178.28

:::
7.51 250.81 0.61 2303.08

:::
2.48 2215.08

StreamingLLM 3.27 36.35 4.21 168.63 3.32 224.24 3.26 356.17 2.45 362.41 4.36 79.34 2.53 135.71 OOM OOM OOM OOM OOM OOM
LongLoRA 5.91

::::
12.92 8.13 13.17 8.30

::::
14.65 9.66 15.97 7.44

::::
17.31 3.23 11.93 9.47 12.17 OOM OOM OOM OOM OOM OOM

CEPE 11.66 128.01 10.42 144.34 9.29 161.28 8.21 145.54 6.56 234.24 3.37 3568.12 2.65 2272.04OOM OOM OOM OOM OOM OOM
YaRN

:::::
13.57 14.52

:::::
12.10 14.02 12.88 17.06 11.49 17.75 6.33 18.90 7.19 13.94 6.59 17.16 OOM OOM OOM OOM OOM OOM

RAG 10.28
::::
12.56 14.65 12.31 16.18 14.55 15.12

::::
15.99 10.00 14.08 4.32 10.38 4.28 33.08 4.64 47.79 3.85 46.55 2.77 44.80

LongLLMLingua 7.73 11.25 9.83 15.12 8.72 16.25 9.08 19.66 8.87 21.55
:::
7.84 26.52 6.23 29.45 3.16

::::
29.96 1.72

:::::
38.53 1.03

:::::
48.53

LLoCO 13.63 34.56 12.78 41.27
:::::
13.15 47.45 12.13 47.87

:::::
10.03 56.30 10.89

:::::
13.32

:::::
10.67

:::::
15.67 10.88 17.31 11.42 16.19 9.43 18.54

E2LLM 15.74 13.71 16.02
::::
13.25 15.23 14.01 15.20 13.77 15.61 13.42 12.08 13.66 12.52 12.91 12.65 13.79 12.43 13.35 12.01 14.29

Table 9: Performance as a function of context length for
Code Completion Task.

Group 0K-3K 3K-6K 6K-9K 9K-12K 12K+

LCC 15.60 16.47 14.16 13.33 16.64
RepoBench 13.90 15.92 14.62 14.69 17.18

information. StreamingLLM is training-free and
implements a Λ-shaped attention mask that further
limits overall information flow. Without training,
models initially designed with full attention strug-
gle to adapt to this mask, diminishing their perfor-
mance across all datasets. E2LLM addresses these
challenges by employing the original full atten-
tion mask rather than resorting to sparse attention
while effectively compressing passages into soft
prompts (i.e., semantic summaries). This strategy
enables E2LLM to consistently achieve superior
performance compared to sparse attention methods.

Length extension: Lastly, we observe that the
length extension method, YaRN, strikes a balance
between QA and summarization, generally finish-
ing third best across all tasks and metrics. Like
E2LLM, it encompasses all relevant information;
however, as noted in previous research (Chen et al.,
2023a), attention mechanisms can become dis-
persed in exceedingly long contexts, diffusing fo-
cus across numerous token positions and achiev-
ing performance inferior to E2LLM. CEPE faces
a similar challenge. Moreover, training the cross-
attention layers in CEPE usually requires a vast
amount of data (around 20 billion tokens, as sug-
gested in (Yen et al., 2024)). This need arises
because these layers are absent from the original
language model (LLM). In our experiments, the
number of tokens for each task is less than 0.1 bil-

lion, raising concerns that the cross-attention layers
may not be sufficiently trained. Thus, integrating
cross-attention layers into existing LLMs may pose
compatibility issues without access to a substantial
dataset for re-training. Additionally, CEPE oper-
ates within a pretraining framework in which the
encoder processes a fixed-length segment of the
sequence initially. This segment is then used to
predict the remainder of the sequence for the de-
coder, effectively functioning as a text completion
task. Notably, for TriviaQA, the context length is
often shorter than the encoder’s predefined length,
leaving the decoder without any input. This re-
sults in the decoder producing irrelevant answers
after training on the TriviaQA data. In contrast,
E2LLM addresses the issue of attention dispersion
encountered by length extension methods by not
extending the decoder’s length. Instead, it trains
the decoder to interpret the soft prompts generated
by the encoder, thereby enhancing performance.

Moreover, we observe that the F1 score of
E2LLM on the TriviaQA dataset is not particu-
larly high. Our analysis suggests that this is mainly
due to the limitations of the F1 evaluation metric.
In certain cases, the answers generated by E2LLM
are semantically relevant to the ground-truth but
lack token-level overlap, which leads to a reduced
F1 score. Representative case studies are presented
in Section E.4.1. Therefore, we argue that a com-
prehensive evaluation requires considering both
G-mean/F1 and PPL. When both are considered,
E2LLM demonstrates overall superior performance
across all datasets.

E.4.1 Case Studies for TriviaQA

We present four bad cases, each providing the con-
text, query, ground-truth answer, E2LLM’s predic-
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tion and the evaluation result w.r.t. F1 and PPL.
The specific results are as follows:

Case #1:
Context: Gremlins is a 1984 American comedy
horror film directed by Joe Dante and released by
Warner Bros....The owner Mr. Wing refuses to
sell the creature to Randall, though his grandson
secretly sells the mogwai to Randall but tells him
to remember three important rules that must never
be broken do not expose the mogwai to bright
lights or sunlight which will kill it, do not let
it get wet, and never feed it after midnight....In
the aftermath of the Gremlins rampage, Mr. Wing
appears to collect Gizmo, scolding the Peltzers for
their carelessness, thinking the Western world is
not ready but comments that Billy might some day
be ready to care for Gizmo properly.
Query: According to the film Gremlins, if you are
looking after a Gremlin you should not feed him
after midnight, not get him wet and not expose him
to what?
Ground-Truth: bright light
Prediction: The answer is Sunlight
F1: 0
PPL: 1.01

Case #2:
Context: The molars or molar teeth are large , flat
teeth at the back of the mouth....The third , rear-
most molar in each group is called a wisdom
tooth. It is the last tooth to appear, breaking
through the front of the gum at about the age
of twenty, although this varies from individual
to individual....For example, the dentition of the
Early Cretaceous monotreme Steropodon is sim-
ilar to those of Peramus and dryolestoids, which
suggests that monotremes are related to some pre-
tribosphenic therian mammals, but, on the other
hand, the status of neither of these two groups is
well-established.
Query: Which teeth are the third molars, and are
always the last to erupt?
Ground-Truth: maxillary third molar
Prediction: wisdom tooth
F1: 0
PPL: 1.76

Case #3:
Context: John Winston Ono Lennon, (born John
Winston Lennon; 9 October 19408 December 1980)
was an English singer and songwriter who co-

founded the Beatles, the most commercially suc-
cessful band in the history of popular music....
He was murdered three weeks after its release.
Lennon revealed a rebellious nature and acerbic
wit in his music, writing, drawings, on film and in
interviews. Controversial through his political
and peace activism, he moved to Manhattan in
1971, where his criticism of the Vietnam War
resulted in a lengthy attempt by Richard Nixon
’s administration to deport him....In September
1980, Lennon commented about his family and his
rebellious nature: He regularly visited his cousin,
Stanley Parkes, who lived in Fleetwood.
Query: In which city was John Lennon murdered?
Ground-Truth: n y
Prediction: New York
F1: 0
PPL: 1.23

Case #4:
Context: Marc Dutroux ( born 6 November 1956
) is a Belgian serial killer and child molester,
convicted of having kidnapped, tortured and sex-
ually abused six girls from 1995 to 1996, rang-
ing in age from 8 to 19, four of whom he mur-
dered....Early life Born in Ixelles, Belgium, on 6
November 1956 , Dutroux was the oldest of five
children....He owned seven small houses, most
of them vacant, and used three of them for the
torture of the girls he kidnapped....His wife was
aware of all these activities. Second arrest In late
1995, Dutroux was arrested by police for involve-
ment in a stolen luxury car racket.
Query: Marc Dutroux hit the headlines over a
’house of horrors’ in which country?
Ground-Truth: Belgian
Prediction: Belgium
F1: 0
PPL: 1.18

E.5 Performance v.s. Context Length
Next, we investigate the sensitivity of the mod-
els’ performance to variations in context length.
Specificallly, We select the widely used QMSum
and NarrativeQA datasets to represent long doc-
ument summarization and long document QA re-
spectively, as their average lengths are longer than
those of other datasets and are widely used by privi-
ous works (Yen et al., 2024; Jiang et al., 2023b; Tan
et al., 2024). Besides, we also select LCC (Guo
et al., 2023) and RepoBench (Liu et al., 2024c)
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datasets to represent repository-level code comple-
tion task. Then, we categorize samples from them
into five groups based on their context lengths and
then evaluate the perplexity (PPL) of the answers
within each group. Our findings are summarized in
Table 8 and Table 9.

The results presented in the table indicate that
E2LLM demonstrates a strong resilience to vari-
ations in context length for both summarization
(QMSum) and question-answering (NarrativeQA)
tasks, consistently achieving the best results among
all models. This robustness can be attributed to
the “understanding” task incorporated during the
training of E2LLM (see Section 2.2). By recon-
structing different parts of the context, E2LLM
effectively comprehends the information, regard-
less of its length. Moreover, the strong resilience
also benifits from E2LLM’s balanced information
compression methodology. Specifically, E2LLM
compresses chunks of approximately equal lengths
into chunk tokens, ensuring that the number of
chunk tokens increases proportionally with the con-
text length. This means that the compression ra-
tio remains consistent regardless of the context
length, which contributes to its resilience against
variations in context length.

Notably, the performances of YaRN, LongLoRA,
CEPE, RAG, and LongLLMLingua also exhibit in-
sensitivity to context length. On the other hand,
LLoCO’s performance declines slowly with in-
creasing context length. Finally, streamingLLM
and the original Llama2-7B-chat demonstrate sensi-
tivity to context length; streamingLLM loses more
information in the middle of the context as length
increases due to its specific Λ-shaped attention
mask, while Llama2-7B-chat struggles to handle
long contexts altogether, as its maximum length
has not been extended.

F More Details of LongBench v2

F.1 Description of Longbench v2

We utilize the LongBench v2 benchmark (Bai
et al., 2024b) to evaluate the effectiveness of
E2LLM. This benchmark comprises 503 challeng-
ing multiple-choice questions, characterized by di-
verse text lengths ranging from 8K to 2M words. It
includes six major domains: single-document QA,
multi-document QA, long in-context learning, long
dialogue history understanding, code repository un-
derstanding, and long structured data understand-
ing. The benchmark has been meticulously crafted

by nearly 100 professionals from various back-
grounds to rigorously assess models’ long-context
understanding capabilities. The entries are classi-
fied based on difficulty, with 192 categorized as
“Easy” and 311 as “Hard.” They are also grouped
by word count into three categories: “Short” (<32k
words), “Medium” (32k-128k words), and “Long”
(>128k words), containing 180, 215, and 108 sam-
ples, respectively. Additionally, the questions ex-
hibit a balanced answer distribution, with options
A, B, C, and D accounting for approximately 19%,
25%, 30%, and 26% of the total, respectively. Over-
all, LongBench v2’s diverse sequence lengths, dis-
tributions, patterns, difficulties, and domains make
it an excellent benchmark for assessing the capabili-
ties of long-context models. Further details are pro-
vided in Table 10. Note that we utilize the Qwen2
tokenizer for token count statistics for each sample.

F.2 Implementation Details
We utilize GTE-Large-en12 as the encoder,
Qwen2.5-7B-Instruct13 as the decoder, and vPMA
as the adapter. The output dimension of each at-
tention head in vPMA is set to 896, and the chunk
size during chunking is set to 512. We apply the
SDFT method (Yang et al., 2024b) to generate a
distilled dataset that closely matches the original
distribution of the decoder, which is subsequently
used for fine-tuning. The prompt for SDFT is as
follows:

Below are an instruction that describes a
task along with a reference answer. Using the
reference answer as a guide, write your own
response.
### Instruction:
Given the context: {context}
Please follow the instruction:
Answer the question: {query}
### Reference Answer:
{answer}
### Response:

The data generated through this method is used
to train the model on two tasks: the “understand-
ing” task and the “reasoning” task, with the weight
for the “understanding” task set to 1e-9. GTE-
Large-en is fine-tuned using the LoRA method
(rank=32, alpha=32), and Qwen2.5-7B-Instruct is
fine-tuned using LoRA with rank=16 and alpha=16.
The vPMA adapter is fully fine-tuned. Training is
performed on 32 A100 GPUs with a batch size of

12https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

13https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct
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Table 10: Data Statics for LongBench v2.

Sub Domain Domain Lang. Metric Easy Hard Short Medium Long Sample Avg. Len

Event ordering Single-Document QA EN ACC 8 12 1 15 4 20 176,880.40
Detective Single-Document QA EN ACC 8 14 1 17 4 22 112,816.59
Literary Single-Document QA EN ACC 11 19 6 17 7 30 186287.83
Multi-news Multi-Document QA EN ACC 11 12 14 9 0 23 52,093.61
Academic Single&Multi-Document QA EN ACC 25 69 63 21 10 94 90,491.53
Financial Single&Multi-Document QA EN ACC 14 23 7 21 9 37 180,481.81
Governmental Single&Multi-Document QA EN ACC 9 32 15 16 10 41 168,729.10
Legal Single&Multi-Document QA EN ACC 12 21 25 5 3 33 64,818.30
New language translation Long In-context Learning EN ACC 11 9 0 2 18 20 580,749.00
Many-shot learning Long In-context Learning EN ACC 10 11 0 21 0 21 115,840.76
User guide QA Long In-context Learning EN ACC 15 25 12 20 8 40 185,394.85
Agent history QA Long-dialogue History Understanding EN ACC 9 11 20 0 0 20 33,724.85
Dialogue history QA Long-dialogue History Understanding EN ACC 11 8 0 19 0 19 119,593.89
Code repo QA Code Repository Understanding EN ACC 18 32 12 9 29 50 1071,100.42
Table QA Long Structured Data Understanding EN ACC 8 10 4 10 4 18 543,243.06
Knowledge graph reasoning Long Structured Data Understanding EN ACC 12 3 0 13 2 15 412,388.20

12, a learning rate of 1e-4, and a 100-step warm-up
period, with a total of 2.4K steps. Training is accel-
erated using the Accelerate library and the Deep-
Speed distributed framework, along with FlashAt-
tention 2 and mixed-precision training techniques.
Additionally, we perform supervised fine-tuning
(SFT) on the Qwen2.5-7B-Instruct model using the
same dataset and 32 A100 GPUs.

For inference, all evaluations are carried out on
a single 80GB A100 GPU to ensure a fair com-
parison. E2LLM inference is performed using the
Transformers framework, while inference for the
SFT Qwen2.5-7B-Instruct model, due to memory
constraints, is carried out using the vLLM frame-
work. We evaluate the model’s performance and
speed based on the sample category (e.g., “Easy”,
“Short”), reporting the average values for both Ac-
curacy and time consumption (in seconds) per sam-
ple. For each method, we set do_sample=False
during generation and conduct a single run to ob-
tain the results.

F.3 Discussion on Generalizability

Regarding the generalizability of E2LLM, we be-
lieve it is validated by its competitive performance
on the LongBench v2 benchmark. E2LLM is
trained using a limited dataset comprising 13K
samples from QMSum, GovReport, Quality, Narra-
tiveQA, and TriviaQA (as explained in Section 3.2).
However, the scope of LongBench v2 is much
broader than this training data and is disjoint from
it (as discussed in F.1). Despite this, E2LLM still
demonstrates strong performance, achieving results
that surpass those of larger models such as Llama
3.1-70B and Nemotron-70B. Our goal in using the

training data is to align the encoder and decoder in
E2LLM and activate its long-context capabilities,
rather than merely memorizing specific knowledge
points. The results from LongBench v2 indicate
that E2LLM can generalize effectively across a
wide scope, even when trained on a relatively small
amount of data.

To mitigate overfitting, we adopt the LoRA-
based PEFT strategy instead of full fine-tuning,
enabling efficient training of both the encoder and
decoder with reduced overfitting risk. Addition-
ally, we leverage the SDFT method, which guides
the decoder to generate training samples based on
reference answers rather than ground-truth labels,
thereby preventing memorization. Early stopping
is also employed to further enhance generalization.

F.4 Performance on Extremely Long Inputs

To evaluate E2LLM’s capabilities with extremely
long-context inputs, we select test samples from
LongBench v2 that exceed 95 times the original
context length of the LLM decoder. The average
token length of these samples is 3,508,190, com-
pared to the original LLM decoder’s maximum of
32,000 tokens. E2LLM achieved an accuracy of
50% on these samples, significantly higher than the
overall accuracy of 31.8% (see Table 2). This indi-
cates that E2LLM effectively retains information
when expanding the context length to nearly 100
times. One extremely long-context input case is
represented in Figure 4.
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Table 11: Task examples in RULER, the table is reproduced from (Hsieh et al., 2024)

Task Example

Single
NIAH
(S-NIAH)

(essays) ......
One of the special magic numbers for long-context is: 12345. ......
What is the special magic number for long-context mentioned in the provided text?
Answer: 12345

Multi-keys
NIAH
(MK-NIAH)

(essays) ......
One of the special magic numbers for long-context is: 12345.
One of the special magic numbers for large-model is: 54321.
......
What is the special magic number for long-context mentioned in the provided text?
Answer: 12345

Multi-values
NIAH
(MV-NIAH)

(essays) ......
One of the special magic numbers for long-context is: 12345.
One of the special magic numbers for long-context is: 54321.
......
What are all the special magic numbers for long-context mentioned in the provided text?
Answer: 12345 54321

Multi-queries
NIAH
(MQ-NIAH)

(essays) ......
One of the special magic numbers for long-context is: 12345.
One of the special magic numbers for large-model is: 54321.
......
What are all the special magic numbers for long-context and large-model mentioned in the provided text?
Answer: 12345 54321

Variable
Tracking
(VT)

(noises) ......
VAR X1 = 12345 ...... VAR Y1 = 54321 ......
VAR X2 = X1 ...... VAR Y2 = Y1 ......
VAR X3 = X2 ...... VAR Y3 = Y2 ......
Find all variables that are assigned the value 12345.
Answer: X1 X2 X3

Common Words
Extraction
(CWE)

aaa bbb ccc aaa ddd eee ccc fff ggg hhh iii iii ......
What are the 10 most common words in the above list?
Answer: aaa ccc iii ......

Frequent Words
Extraction
(FWE)

aaa bbb ccc aaa ddd eee ccc fff ggg aaa hhh aaa ccc iii iii ......
What are the 3 most frequently appeared words in the above coded text?
Answer: aaa ccc iii

Question
Answering
(QA)

Document 1: ...... aaa ......
Document 2: ...... bbb ......
Document 3: ...... ccc ......
Question: question
Answer: bbb

G Implementation Details for
Augmentation with Retrieval

We trained our E2LLM following specific settings
for each task. For document summarization (Doc
Sum) and question answering (Doc QA), we ad-
hered to the configurations detailed in Appendix E.
For the LongBench v2 (LB v2) benchmark, we
trained an E2LLM model using data generated
through the SDFT method, as described in Sec-
tion 3.2, with implementation details found in Ap-
pendix F.2. The Needle-In-A-HayStack (NIAH)
task, part of the RULER Benchmark, comprises
eight distinct NIAH datasets. Training the E2LLM
model for NIAH involved following the settings

outlined in Appendix H.2.

H RULER

H.1 Datasets
In this section, we present the results of Llama2-
7B-chat, LongLoRA, YaRN, LongLLMLingua,
LLoCO, and E2LLM on the RULER bench-
mark (Hsieh et al., 2024). RULER primarily con-
sists of four types of tasks:

• Retrieval: This task involves the Needle-in-a-
Haystack test, which evaluates retrieval capabil-
ity using diverse types and quantities of “nee-
dles”. The term “needle” refers to a precise
fact or statement concealed within a lengthy
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Context: 
class array_namespace_info:
"""
Get the array API inspection namespace for NumPy.
The array API inspection namespace defines the following functions:
"""
----------(More lines of code. . .)--------
__module__ = 'numpy'

def capabilities(self):
return {
"boolean indexing": True,
"data-dependent shapes": True,
# 'max rank' will be part of the 2024.12 standard
# "max rank": 64,
}
----------(More lines of code. . .)--------

Query: In the context of the numpy.ma module, which provides 

functionality for handling missing or invalid values in arrays, 

which of the following wrongly describes how the 

apply\_along\_axis function ensure the correct construction of the 

output array when applying func1d along a specified axis, and 

how it handle the shape transformations and data types of the 

resulting masked array?

Ground-Truth: C

Prediction: The correct answer is (C) Iteration Over Indices: The 

function uses a recursive function to iterate over all indices of the 

input array, adjusting the index for each dimension except the 

specified axis. Inside the loop, the index of the specified axis is 

set to slice(None) to ensure that func1d is applied along the 

correct dimension.

Domain: Code Repository Understanding

Sub Domain: Code Repo QA

Difficulty: Hard

Length: Long

Token nums (Qwen2 Tokenizer): 3,417,149 (104.28 times 

larger than the context window of Qwen2.5-7B-Instruct)

Figure 4: Case study on extremely long-context input
in LongBench v2.

“haystack” of text. In RULER, NIAH encom-
passes various retrieval tasks, and the types of
“needles” involved in these tasks include words,
numbers, and essays.

• Muti-hop Tracing: The variable tracking task
(VT) serves as a minimal proxy for corefer-
ence chain resolution, examining the ability to
trace entities across multi-hop connections. This
task examines the ability to track relevant co-
occurrence patterns and map the behavior of
skipped connections within long context.

• Aggregation: This task entails the extraction of
common or frequent words (CWE and FWE),

functioning as a proxy for summarization to
test the ability to aggregate relevant information
across long-range contexts. For CWE, words
are sampled from a discrete uniform distribution.
The model is tasked with identifying a fixed num-
ber of commonly used words from a set of infre-
quent words, the quantity of which increases as
the sequence length grows. For FWE, words are
sampled from a Zeta distribution. In this case, the
model’s objective is to identify the top-K most
frequent words within the given context.

• Question Answering: For this task, distracting
information is added to the input of existing short-
context QA datasets in order to assess question-
answering capabilities at various context sizes.

The details of sample demonstrations for each task
is presented in Table 11. For the VT task, we set
the number of variable name-binding chains and
the number of times binding variable names in each
chain to be 1 and 4, respectively. For the CWE and
FWE tasks, we set the frequency of ten common
words to be 30, uncommon words to be 3, and
alpha as 2.0. Finally, for the QA task, we use two
single-hop short-context QA datasets SQuAD and
HotPotQA.

H.2 Implementation Details
For models requiring training, we combine the
training data from Section 3.1 (with details in
Table 6), resulting in around 13K samples. The
dataset is divided into training and validation sets
with a 95:5 ratio. All models are based on Llama2-
7B-chat with configurations consistent with those
in Appendix B. Specifically for E2LLM, we utilize
GTE-Large-en 14 as the encoder and Llama2-7B-
chat 15 as the decoder, with the vPMA adapter
integrated. Each attention head of the vPMA is
configured with an output dimension of 1024, and
during chunking, the chunk size is set to 512. We
employ two training objectives, “understanding”
and “reasoning”, assigning a weight of 1e-9 to the
“understanding” task. GTE-Large-en is fine-tuned
using the LoRA method with a rank of 32 and al-
pha of 32, while Llama2-7B-chat is fine-tuned with
LoRA at a rank of 16 and alpha of 16. The vPMA
adapter undergoes full fine-tuning. The training
process is carried out on 16 A100 GPUs, with a

14https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

15https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf
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Table 12: Performance on RULER Benchmark. The best results are in bold, the second are underlined, and the
third are

::::
wavy

::::::::::
underlined.

Contex Length 4K 8K 16K

Task NIAH VT CWE FWE QA NIAH VT CWE FWE QA NIAH VT CWE FWE QA

LLama2-7B-chat 95.87 27.00 85.60 74.33 63.00 - - - - - - - - - -
LongLoRA 41.07 1.60 16.60 9.33

:::::
55.50 38.19 2.20 13.40 10.33 44.00 36.78 2.00 5.80 4.00 52.00

YaRN 44.00 19.80 15.20 20.33 57.00
:::::
42.21 1.80 10.30 11.67

:::::
34.50

:::::
38.88 1.40 3.90 5.33 29.00

LongLLMLingua 27.44 5.20 7.60 44.67 14.50 30.44
::::
4.20 5.70 24.33 16.0 32.75 7.00 2.00 27.33 15.50

LLoCO 0.44 0.00 27.70
:::::
24.67 32.50 0.19 0.00 24.10

:::::
17.00 28.50 0.41 0.00 20.90 22.67 20.00

E2LLM-C 2.45 1.20 6.80 13.67 35.50 3.50 0.60 6.30 11.67 31.00 2.06 1.60
::::
7.30

:::::
10.33 28.50

E2LLM-R 78.28 3.00 41.50 0.00 35.00 59.50 4.60 21.50 19.33 33.50 56.00
::::
5.40 6.40 2.33

:::::
40.00

E2LLM-C+R
:::::
66.22

::::
7.20

:::::
32.40 2.00 37.00 60.66 8.60

:::::
21.10 12.00 35.50 57.78 10.20 9.70 3.00 41.00

Contex Length 32K 64K 128K

Task NIAH VT CWE FWE QA NIAH VT CWE FWE QA NIAH VT CWE FWE QA

LLama2-7B-chat - - - - - - - - - - - - - - -
LongLoRA

:::::
34.75 0.40 1.80 1.67

:::::
33.50 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

YaRN 32.94 1.20 2.80 2.00 28.50 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
LongLLMLingua 26.06 6.20 0.30 11.33 18.50

:::::
23.25 5.20 0.30 13.33 15.0

:::::
20.88 5.20 0.40 21.67 4.50

LLoCO 0.25 0.00 0.10 24.00 4.50 0.31 0.00 2.40
:::::
15.67 9.00 0.28 0.00 3.30 4.33 2.00

E2LLM-C 2.36 0.80 5.50
:::::
12.67 28.00 2.63 0.60 4.90 26.33

:::::
29.50 2.60 1.00 2.50

::::
8.67

::::
7.50

E2LLM-R 48.13
::::
5.60

::::
5.40 1.67 34.00 50.13

::::
4.40

::::
2.60 10.67 31.00 40.67

::::
4.40 1.80 6.67 23.50

E2LLM-C+R 52.66 8.60 6.70 15.00 40.50 49.34 6.20 3.20 32.67 34.50 48.38 5.00
::::
2.30 26.67 27.50

batch size of 12, learning rate of 1e-4, and a warm-
up period of 100 steps. Early stopping is applied
based on validation loss. The training is facili-
tated using the Accelerate library and DeepSpeed
distributed framework, with FlashAttention 2 and
mixed precision training techniques employed to
expedite the process.

For inference, we consider three variants
of E2LLM: the original E2LLM that only re-
ceives chunk tokens as input (denoted E2LLM-C),
E2LLM that only receives text retrieved by the text
encoder (denoted E2LLM-R), and E2LLM that re-
ceives both the texts of the retrieved chunks and
the chunk tokens of the unselected chunks (denoted
E2LLM-C+R). It is important to note that we only
select the top three chunks most relevant to the
user query during retrieval. Additionally, we do
not train E2LLM-R and E2LLM-C+R to adapt to
the retrieved contexts. The inference process for
E2LLM-C+R is prompted as follows:

Given the context: [chunk tokens]
Some information that may be useful:
[retrieved_text_tokens]
Please follow the instruction:
Answer the question: {query}

All inference is conducted on a single A100 GPU
with 80 GB of memory, and for each method, we set
do_sample=False during generation and conduct a
single run to obtain the results.

H.3 Discussions

The results are summarized in Table 12. Given
the diverse tasks in RULER, we can clearly iden-
tify the strengths and weaknesses of each method.
While YaRN and LongLoRA perform well in the
QA task, they struggle significantly with the CWE
and FWE tasks, likely due to attention distraction
issues that hinder their focus on specific common
or frequent words. Additionally, both methods face
out-of-memory problems when the context length
reaches or exceeds 64K, even when utilizing an
A100 GPU with 80GB of memory, indicating that
their space complexity is too high for resource-
limited scenarios.

In contrast, LongLLMLingua excels in the FWE
task but underperforms in others. Soft compres-
sion methods, such as E2LLM-C and LLoCO, of-
fer a more balanced performance profile, achiev-
ing comparable results on the aggregation (CWE
and FWE) and QA tasks. E2LLM-C tends to be
more favorable for QA tasks, while LLoCO per-
forms slightly better on aggregation. However,
both E2LLM-C and LLoCO underperform on the
NIAH task, which demands fine-grained, token-
level retrieval of information. This limitation is
inherent to the nature of soft prompt compression,
which primarily retains semantic information while
compressing away token-level details. For tasks
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like QA, where broader semantic understanding
is sufficient to form a coherent response, E2LLM-
C often achieves SOTA performance among the
evaluated methods.

On the other hand, the performance on the
NIAH task sees a significant improvement with
the E2LLM-R+C configuration, which combines
the original E2LLM with RAG. Indeed, E2LLM-
R+C consistently achieves either the best perfor-
mance or ranks within the top three among all eval-
uated methods across all tasks in RULER. More-
over, E2LLM-R+C generally outperforms E2LLM-
R (RAG alone), indicating that the compressed
chunk tokens retained by E2LLM-C still contain
valuable information contributing to performance.
Given that QA tasks are more commonly encoun-
tered in real-world applications than the synthetic
NIAH task (as seen in LongBench v2), we argue
that E2LLM remains a practical and efficient tool
for long-context modeling. If fine-grained retrieval
capabilities are crucial for a specific application,
augmenting E2LLM with RAG offers an effective
solution.

Lastly, we observe that all methods perform
poorly on the VT task, which demands a nuanced
understanding of long contexts, presenting a chal-
lenge that may be too great for existing baselines.

I More Discussions on Training and
Inference Efficiency

Training Efficiency: We assess the training
throughput of all methods requiring training, in-
cluding YaRN, LongLoRa, CEPE, LLoCO, and
E2LLM. The experiments conducted on a single
eight A100 GPU-equipped machine focus on mea-
suring the number of processed tokens per second
(tps), which serve as our evaluation metric. The
configuration for all baselines adheres to the respec-
tive parameters specified in each of their original
papers, and for our E2LLM, a chunk size of 512
characters is set.

As demonstrated in Figure 3a, YaRN is clearly
the least training-efficient method due to its nec-
essary handling of the quadratic time complexity
associated with the context length, stemming from
its lack of original long context compression. Lon-
gLoRA, utilizing a sparse attention mechanism,
offers slightly improved efficiency compared to
YaRN by eliminating the need to compute the at-
tention between some query-key pairs. Conversely,
both CEPE and LLoCO demonstrate high through-

put. CEPE initially processes all chunks of the
long context in a parallel way, akin to E2LLM, but
retains token-level embedding opposed to chunk-
level embedding. This method then only trains the
cross-attention linking the encoder and decoder,
introducing linear time complexity relative to the
long context length. In contrast, E2LLM trains the
decoder relative to the compressed context length,
thus explaining CEPE’s higher throughput. Sur-
passing these, LLoCO performs remarkably well
in training efficiency given that the summary vec-
tors or soft prompt are prepared offline ahead of
time, necessitating only the fine-tuning of the LLM
decoder. E2LLM finally, processes context chunks
in parallel during the encoding phase and fine-
tunes the decoder module efficiently with LoRA,
thus also demonstrating commendable training effi-
ciency.

Inference Efficiency: We now proceed to exam-
ine the inference efficiency of various methods. We
begin by selecting seven differing context lengths
that range from 1K to 73K; both YaRN and Lon-
gLoRA encounter out-of-memory issues at a con-
text length of 74K. For each selected context length,
we randomly select ten samples and truncate them
to their predefined lengths. Upon averaging the run-
time and GPU memory costs (i.e., peak allocated
memory) over these samples, we reveal the results
as a function of context length in Figure 3b and 3c.

Our model, E2LLM, exhibits the most impres-
sive performance metrics, particularly in terms
of runtime and memory usage, even for lengthy
sequences of up to 73K tokens. In contrast,
both YaRN and LongLoRA display significantly
higher resource consumption, primarily due to
the quadratic complexity inherent in full attention
mechanisms during inference (notably, LongLoRA
employs a full attention mask at this stage). Unlike
LongLoRA, StreamingLLM utilizes a Λ-shaped
sparse attention mask during inference, resulting
in reduced time and memory costs. However, as
indicated in the official implementation, for any
given context, StreamingLLM must initially load
the entire KV cache associated with that context.
During the subsequent generation process, it uti-
lizes Sink Attention to preserve the KV caches
for both the starting and recent tokens. Conse-
quently, in long-context scenarios, the memory us-
age and inference time for StreamingLLM still ex-
hibit quadratic growth, i.e., the KV cache cannot
be compressed during the prefill stage (Yang et al.,
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2024a).
On the other hand, CEPE demonstrates both time

and space efficiency by computing cross-attention
solely between the input to the decoder (such as a
user query) and the encoder. This approach allows
CEPE to achieve subquadratic complexity concern-
ing long contexts. However, it focuses on token-
level embeddings instead of chunk-level embed-
dings, which necessitates more time and memory
compared to E2LLM.

Furthermore, LongLLMLingua modifies the
LLM into a cross-encoder to identify the most
relevant chunks and tokens related to the user
query. Consequently, while its runtime increases
dramatically with longer contexts due to the cross-
encoder’s high complexity, the memory usage re-
mains stable. This is because the chunks can be
processed sequentially, preventing significant mem-
ory overhead.

A similar trend is observed in another advanced
prompt compression method, RAG. As we do not
account for the memory costs associated with the
retrieval process, and considering the retriever only
recalls the 40 most relevant chunks from a lengthy
context regardless of its total length, the genera-
tor’s inference memory does not depend on con-
text length. Nonetheless, since it processes the re-
trieved context token-by-token, the inference time
and memory requirements still exceed those of
E2LLM.

Lastly, LLoCO also enhances inference time
through soft prompt compression; however, its text
encoder, AutoCompressor, can only compress the
original text by a maximum of 32 times, whereas
E2LLM achieves an impressive compression factor
of around 100 times. Furthermore, while AutoCom-
pressor processes all chunks sequentially, E2LLM
leverages parallel processing, further minimizing
inference time.

J Results and Discussions on Ablation
Studies

In this subsection, we conduct ablation studies
of E2LLM using the QMSum and NarrativeQA
datasets, which serve as representative benchmarks
for long-context summarization and document
question-answering tasks, respectively. Details of
each variant examined in Table 13 are outlined be-
low.

• −Und variant entails excluding the “understand-
ing” task from our model and only employing the

“reasoning” task for training purposes, which em-
phasis on the critical role that the “understanding”
task plays within the model’s performance.

• −A+MLP denotes the absence of the vPMA-
based adapter, using the encoder’s [CLS] token
as the chunk embedding and an MLP for align-
ment with the decoder’s input space. This serves
as a baseline to assess the proposed adapter’s
effectiveness.

• −E denotes the freezing of encoder parame-
ters, thereby allowing only the adapter and the
decoder-only LLM to be trainable. This configu-
ration aims to substantiate our hypothesis that a
pretrained encoder alone is incapable of preserv-
ing the pertinent information that significantly
impacts the performance of the LLM. Hence,
maintaining the encoder’s parameters as train-
able is crucial.

• −D entails keeping the decoder-only LLM
frozen, in order to test whether the LLM can
still adequately comprehend the output tokens
from the adapter in the absence of any dedicated
training.

• +Overlap variant introduces an overlap of 30%
of the chunk size between sequential chunks dur-
ing the chunking process. Moreover, within the
scope of the “understanding” task’s restatement
operation, the model is required to restate the
overlapping section of these chunks once.

• +BGE variant test, on the other hand, involves
replacing the GTE-large-en model with the BGE-
m3 model as the encoder. This study seeks to
affirm that our model maintains compatable with
different sentence-embedding models serving as
encoders.

• +Llama2−13B configuration, similar in testing
to the +BGE variant, is designed to verify the
compatibility of our E2LLM with other LLMs
serving as decoders.

First, we assess the significance of the “under-
standing” task within E2LLM. Our findings in-
dicate a substantial decrease in performance—by
16.39%—when this task is omitted, highlighting its
crucial role in helping E2LLM interpret the chunk
embeddings produced by the encoder and further
enhancing the performance of the “reasoning” task.
Next, we assess the importance of the proposed
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Table 13: Ablation Study on QMSum and NarrativeQA.

Variants
QMSum NarrativeQA Avg.

Rel. Diff.R1 R2 RL G-mean Prec. Recall F1

E2LLM 25.92 6.70 21.34 15.47 13.84 13.61 12.47 -

-Und 23.76 5.20 19.45 13.64 11.78 10.54 10.65 -14.78%

-A+MLP 25.37 6.55 18.75 14.61 13.53 13.79 12.35 -3.42%

-E 24.32 5.87 20.45 14.29 12.47 11.25 11.56 -9.27%

-D 23.98 5.23 20.22 13.64 12.23 11.13 11.49 -12.03%

+Overlap 25.57 6.92 21.51 15.61 13.68 13.87 12.71 +0.90%

+BGE 24.61 6.29 21.09 14.83 13.24 13.20 11.82 -4.15%

+Llama2-13B 25.94 6.83 21.95 15.72 14.03 13.81 12.82 +1.73%

Table 14: Effect of chunk size on the model performance.

Chunk Size
Context

Window

QMSum GovReport Quality NarrativeQA TriviaQA

R1 R2 RL G-mean R1 R2 RL G-mean Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

128 100K 25.13 6.22 20.65 14.78 28.20 6.74 25.84 16.99 13.04 14.68 12.34 13.36 13.14 12.13 34.95 36.90 33.28

512 400K 25.92 6.70 21.34 15.47 29.14 7.94 27.08 18.43 13.41 15.23 12.95 13.84 13.61 12.47 38.82 39.43 38.57

1024 800K 26.04 6.77 21.40 15.57 28.65 7.87 27.23 18.31 13.22 14.57 12.45 13.34 13.27 11.77 36.31 39.02 35.41

2048 1.6M 24.08 5.56 19.68 13.81 27.82 6.05 25.17 16.18 12.63 14.15 12.07 12.99 12.85 11.65 36.87 36.44 33.36

adapter, and conduct an evaluation by replacing
it with the combination of the [CLS] token and
MLP. The results showed a performance drop of
3.42%, indicating that our adapter more effectively
captures chunk information and aligns better with
the decoder. Then, we examine the necessity of
training the LoRA branches of the encoder and the
decoder during alignment. As shown in Table 13,
the results for configurations -E and -D underscore
the importance of training these components; with-
out this training, E2LLM’s performance diminishes
by 9.08% and 12.03%, respectively. Finally, we
explore the impact of replacing the chunker, text
encoder, and LLM decoder within E2LLM (notated
as +overlap, +BGE, and +Llama2-13B). Our analy-
sis reveals that chunkers with overlapping segments
(e.g., 30% overlap) provide a modest performance
boost. Additionally, employing more advanced en-
coders and decoders further enhances E2LLM’s
performance, suggesting that improvements in indi-
vidual components can positively affect the overall
system.

J.1 Scaling to Larger-Scale Models

We adopt Llama2-70B as the decoder to further
validate the feasibility of E2LLM on larger-scale
language models (denoted as E2LLM-Lm-70B).

Table 15: Performance on E2LLM with larger-scale
model.

R1 R2 RL G-mean PPL

E2LLM-Lm-7B 25.92 6.70 21.34 15.47 13.66
E2LLM-Lm-70B 26.31 6.78 23.63 16.15 12.02

Rel. Improv. +1.50% +1.19% +10.73% +4.40% +12.01%

During training, we apply 4-bit quantization using
QLoRA’s Parameter-Efficient-Finetuning (PEFT)
method. We conduct training and evaluating on
QMSum, assessing its performance using the R1,
R2, RL, G-mean, and PPL metrics as well as their
relative improvement over those corresponding to
the 7B model. The results are shown in Table 15.

As shown in the table, the performance of
E2LLM significantly improves when using Llama2-
70B, particularly in terms of Rouge-L and PPL.
It is important to note that Rouge-1 and Rouge-
2 evaluate unigram and bigram overlaps, respec-
tively, measuring the match between the generated
text and reference text at the word and phrase lev-
els. In contrast, Rouge-L evaluates the similar-
ity of the generated and reference texts based on
the longest common subsequence (LCS), which
measures structural similarity at the sentence level.
This indicates that by leveraging a larger model,
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Table 16: Performance of E2LLM w.r.t. the weight
assigned to the“understanding” task.

Dataset QMS. G.R. Qua. N.QA T.QA
Metric G-mean PPL G-mean PPL F1 PPL F1 PPL F1 PPL

1e-7 15.47 13.66 18.43 2.81 12.36 8.45 12.47 13.07 33.85 7.90
1e-9 14.77 13.98 17.49 2.97 12.95 8.99 11.77 12.93 38.57 7.53

E2LLM is able to better capture the overall sen-
tence structure and word order. Additionally, the
reduction in PPL further demonstrates the model’s
ability to generate more coherent and reasonable
content.

J.2 Hyperparameter Sensitivity

In this section, we explore the effects of hyperpa-
rameters on the performance of E2LLM, specifi-
cally focusing on the weight assigned to the “under-
standing” task, the LoRA rank of the encoder and
decoder, the number of attention heads in vPMA
for each chunk, and the chunk size.

The weight assigned to the “understanding” task
indicates its relative importance compared to the
“reasoning” task. Recall that the input context typi-
cally has a much longer length than answers, mak-
ing it too long to be fully reconstructed at once.
To address this, we employ a sliding window ap-
proach, reconstructing the original context in seg-
ments based on a few consecutive chunks until
the entire input has been reconstructed. Conse-
quently, the samples for the “understanding” task
are significantly more numerous than those for the
“reasoning” tasks. To maintain sample balance, we
usually assign a smaller weight to the restatement
task. As depicted in Figure 5a, the optimal weight
may vary across different datasets, which may be
influenced by factors such as context length and the
sentence embedding model’s capacity to compre-
hend the specific semantics of the context. Besides,
we perform parameter sensitivity experiments with
weights set to 1e− 7 and 1e− 9 on QMSum, Gov-
Report, Quality, NarrativeQA, and TriviaQA. The
results are summarized in Table 16. It is easy to
observe that while the weight for the “understand-
ing” task does have some effect, its variation does
not significantly impact the overall performance
of E2LLM. Specifically, regarding the PPL, chang-
ing the weight between 1e − 7 and 1e − 9 does
not affect E2LLM’s ranking in Table 1 across all
datasets, except for GovReport.

Moreover, we investigate the optimal LoRA rank
of the encoder (i.e., GTE-large-en) and the decoder

(i.e., Llama2-7B-chat) within the range of {0, 4,
8, 12, 16, 20, 24} and {0, 2, 4, 6, 8, 10, 12}, re-
spectively. The findings suggest that having no
trainable parameters—in other words, completely
“freezing” the encoder and decoder—hinders the
effective extraction of original context content and
alignment between the encoder and decoder, as
discussed in Section 2.1. As the rank of the two
modules increases, a corresponding improvement
in performance is observed, thereby underscoring
the importance of training. Performance enhance-
ment continues until it reaches a peak within a spe-
cific range of ranks. However, beyond this optimal
range, further increases in rank lead to a decline
in performance, attributable to overfitting on the
training datasets.

We also explore the influence of the number of at-
tention heads within each chunk’s vPMA on overall
performance. We test the following values: 1, 2, 4,
8. Our results, presented in Figure 5d, consistently
show that allocating 4 attention heads achieves su-
perior performance across all datasets, demonstrat-
ing the stability of this configuration. We believe
that fewer attention heads are insufficient to capture
the various nuances in the relationships between
token-level embeddings, leading to poorer results.
Conversely, allocating a larger number of heads re-
sults in lower-dimensional representations for each
head, which reduces their individual capacity to
encode information, ultimately degrading perfor-
mance.

We investigate the effect of chunk size on model
performance, experimenting with sizes of 128, 512,
1024, 2048 characters, corresponding to maximum
context window sizes of 100K, 400K, 800K, and
1.6M tokens for various E2LLM variants. Results
in Table 14 show that the differences in perfor-
mance metrics across different chunk sizes are rel-
atively small for all datasets used in this study, in-
dicating that the alignment process in E2LLM can
effectively mitigate the impact of chunk size on per-
formance. Nonetheless, selecting an optimal chunk
size can still provide a slight performance boost.
While smaller chunks might reduce compression
and better preserve inputs, they may hinder context
capture in longer sentences or paragraphs, mak-
ing it difficult for the encoder to grasp semantics,
which affects downstream tasks. Conversely, larger
chunk sizes increase diversity and noise, compli-
cating semantic capture and leading to decreased
performance, especially in tasks like DocumentQA
where relevant sentences may be overlooked.
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Figure 5: Effect of the hyperparameter. (a) the loss weight of “understanding” task. (b) the lora rank of encoder. (c)
the lora rank of decoder. (d) the number of attention heads for each chunk.
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