@inproceedings{min-etal-2025-multi,
title = "Multi-Document Event Extraction Using Large and Small Language Models",
author = "Min, Qingkai and
Qu, Zitian and
Guo, Qipeng and
Hu, Xiangkun and
Zhang, Zheng and
Zhang, Yue",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.972/",
pages = "19265--19296",
ISBN = "979-8-89176-332-6",
abstract = "Multi-document event extraction aims to aggregate event information from diverse sources for a comprehensive understanding of complex events. Despite its practical significance, this task has received limited attention in existing research. The inherent challenges include handling complex reasoning over long contexts and intricate event structures. In this paper, we propose a novel collaborative framework that integrates large language models for multi-step reasoning and fine-tuned small language models to handle key subtasks, guiding the overall reasoning process. We introduce a new benchmark for multi-document event extraction and propose an evaluation metric designed for comprehensive assessment of multiple aggregated events. Experimental results demonstrate that our approach significantly outperforms existing methods, providing new insights into collaborative reasoning to tackle the complexities of multi-document event extraction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="min-etal-2025-multi">
<titleInfo>
<title>Multi-Document Event Extraction Using Large and Small Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qingkai</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zitian</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qipeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangkun</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Multi-document event extraction aims to aggregate event information from diverse sources for a comprehensive understanding of complex events. Despite its practical significance, this task has received limited attention in existing research. The inherent challenges include handling complex reasoning over long contexts and intricate event structures. In this paper, we propose a novel collaborative framework that integrates large language models for multi-step reasoning and fine-tuned small language models to handle key subtasks, guiding the overall reasoning process. We introduce a new benchmark for multi-document event extraction and propose an evaluation metric designed for comprehensive assessment of multiple aggregated events. Experimental results demonstrate that our approach significantly outperforms existing methods, providing new insights into collaborative reasoning to tackle the complexities of multi-document event extraction.</abstract>
<identifier type="citekey">min-etal-2025-multi</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.972/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>19265</start>
<end>19296</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Document Event Extraction Using Large and Small Language Models
%A Min, Qingkai
%A Qu, Zitian
%A Guo, Qipeng
%A Hu, Xiangkun
%A Zhang, Zheng
%A Zhang, Yue
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F min-etal-2025-multi
%X Multi-document event extraction aims to aggregate event information from diverse sources for a comprehensive understanding of complex events. Despite its practical significance, this task has received limited attention in existing research. The inherent challenges include handling complex reasoning over long contexts and intricate event structures. In this paper, we propose a novel collaborative framework that integrates large language models for multi-step reasoning and fine-tuned small language models to handle key subtasks, guiding the overall reasoning process. We introduce a new benchmark for multi-document event extraction and propose an evaluation metric designed for comprehensive assessment of multiple aggregated events. Experimental results demonstrate that our approach significantly outperforms existing methods, providing new insights into collaborative reasoning to tackle the complexities of multi-document event extraction.
%U https://aclanthology.org/2025.emnlp-main.972/
%P 19265-19296
Markdown (Informal)
[Multi-Document Event Extraction Using Large and Small Language Models](https://aclanthology.org/2025.emnlp-main.972/) (Min et al., EMNLP 2025)
ACL