@inproceedings{wang-etal-2025-vocalnet,
title = "{V}ocal{N}et: Speech {LLM}s with Multi-Token Prediction for Faster and High-Quality Generation",
author = "Wang, Yuhao and
Liu, Heyang and
Cheng, Ziyang and
Wu, Ronghua and
Gu, Qunshan and
Wang, Yanfeng and
Wang, Yu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.989/",
pages = "19595--19612",
ISBN = "979-8-89176-332-6",
abstract = "Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. In this work, we introduce VocalNet, a series of high-performance speech LLMs featuring a scalable and model-agnostic training framework as well as a novel multi-token prediction (MTP) paradigm for speech generation. We first propose an efficient two-stage training framework that enables LLMs to acquire real-time speech interaction capabilities. Through extensive experiments on various training configurations, we ensure both simplicity and effectiveness in the training strategy. Furthermore, inspired by advances in language modeling, we introduce MTP into the domain of speech LLMs{---}an alternative to traditional next-token prediction (NTP){---}which enables the model to predict multiple future tokens at each step. Through systematic analysis and improved implementation, we show that MTP not only accelerates inference speed but also significantly enhances speech quality. Experimental results demonstrate that VocalNet achieves performance comparable to state-of-the-art Omni LLMs while outperforming existing open-source speech LLMs, despite using limited training data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-vocalnet">
<titleInfo>
<title>VocalNet: Speech LLMs with Multi-Token Prediction for Faster and High-Quality Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heyang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyang</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronghua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qunshan</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanfeng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. In this work, we introduce VocalNet, a series of high-performance speech LLMs featuring a scalable and model-agnostic training framework as well as a novel multi-token prediction (MTP) paradigm for speech generation. We first propose an efficient two-stage training framework that enables LLMs to acquire real-time speech interaction capabilities. Through extensive experiments on various training configurations, we ensure both simplicity and effectiveness in the training strategy. Furthermore, inspired by advances in language modeling, we introduce MTP into the domain of speech LLMs—an alternative to traditional next-token prediction (NTP)—which enables the model to predict multiple future tokens at each step. Through systematic analysis and improved implementation, we show that MTP not only accelerates inference speed but also significantly enhances speech quality. Experimental results demonstrate that VocalNet achieves performance comparable to state-of-the-art Omni LLMs while outperforming existing open-source speech LLMs, despite using limited training data.</abstract>
<identifier type="citekey">wang-etal-2025-vocalnet</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.989/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>19595</start>
<end>19612</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VocalNet: Speech LLMs with Multi-Token Prediction for Faster and High-Quality Generation
%A Wang, Yuhao
%A Liu, Heyang
%A Cheng, Ziyang
%A Wu, Ronghua
%A Gu, Qunshan
%A Wang, Yanfeng
%A Wang, Yu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F wang-etal-2025-vocalnet
%X Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. In this work, we introduce VocalNet, a series of high-performance speech LLMs featuring a scalable and model-agnostic training framework as well as a novel multi-token prediction (MTP) paradigm for speech generation. We first propose an efficient two-stage training framework that enables LLMs to acquire real-time speech interaction capabilities. Through extensive experiments on various training configurations, we ensure both simplicity and effectiveness in the training strategy. Furthermore, inspired by advances in language modeling, we introduce MTP into the domain of speech LLMs—an alternative to traditional next-token prediction (NTP)—which enables the model to predict multiple future tokens at each step. Through systematic analysis and improved implementation, we show that MTP not only accelerates inference speed but also significantly enhances speech quality. Experimental results demonstrate that VocalNet achieves performance comparable to state-of-the-art Omni LLMs while outperforming existing open-source speech LLMs, despite using limited training data.
%U https://aclanthology.org/2025.emnlp-main.989/
%P 19595-19612
Markdown (Informal)
[VocalNet: Speech LLMs with Multi-Token Prediction for Faster and High-Quality Generation](https://aclanthology.org/2025.emnlp-main.989/) (Wang et al., EMNLP 2025)
ACL