
Proceedings of the First Workshop of Evaluation of Multi-Modal Generation, pages 1–9
January 20, 2025. ©2025 Association for Computational Linguistics

1

A Dataset for Programming-based Instructional Video Classification and
Question Answering

Sana Javaid Raja, Adeel Zafar, Aqsa Shoaib
Faculty of Computing, Riphah International University
Correspondence: sanajavaidraja@gmail.com, adeel.zafar@riphah.edu.pk

Abstract

This work aims to develop an understanding of
the rapidly emerging field of VideoQA, partic-
ularly in the context of instructional program-
ming videos. It also encourages the design-
ing of a system that can produce visual an-
swers to programming-based natural language
questions. We introduce two datasets: Code-
VidQA, with 2,104 question-answer pair with
timestamps and links taken from programming
videos extracted using Stack Overflow for Pro-
gramming Visual Answer Localization task,
and CodeVidCL with 4,291 videos (1751 pro-
gramming, 2540 non-programming) for Pro-
gramming Video Classification task. In ad-
dition, we proposed a framework that adapts
BigBird and SVM for video classification tech-
niques. The proposed approach achieves a sig-
nificantly high accuracy of 99.61% for video
classification.

1 Introduction

One of the most interesting trends on the internet is
the availability of information in the form of videos.
Similarly, instructional videos have become the
usual way of teaching and learning how to solve cer-
tain problems. Programming-based instructional
videos have emerged and effectively convey tar-
geted information via instructional demonstrations
and voice-overs. 80% of all of those videos are in
English, 2% are in Spanish and 4% are in German
(Kadriu et al., 2020).

Hence, the practice of self-learning has become
more convenient, especially with the availability
of massive open online courses (MOOCs) (Hill,
2014). Approximately 19% to 20% of a devel-
oper’s time is dedicated to using the internet for
purposes of searching information for development
and programming. Although more programming
tutorials are being produced and used, developers
are sometimes hard-pressed to find good videos
that give as much coverage to actual use cases as

they do to the theory behind them. For example,
developers looking for specific questions may scan
through many videos to find one that they want.
Moreover, during tutorial sessions, language bar-
riers may impede the learner’s comprehension of
the subject, especially among those whose second
language is English (Brandt et al., 2009).

Despite being widely believed as popular, Video
Question Answering does not escape from inher-
ently challenging hurdles. To answer questions,
VideoQA models need adequate knowledge of the
visual content so they can recognize visual ob-
jects and understand their semantic, spatial, tempo-
ral, and causal relations (Khurana and Deshpande,
2021). However, information on their effective-
ness remains limited, often certainly, because of
the absence of proper frameworks and datasets for
evaluation. Uncovering the causes behind failure
in VideoQA is a tough nut to crack, either posed
by the dataset or the trained model (Khurana and
Deshpande, 2021).

The contributions of this work are the new
CodeVidQA dataset which contains 2,104 compre-
hensively annotated timestamped question-answer
pairs curated from videos extracted from Stack
Overflow and a new dataset, CodeVidCL consists
of 4,291 programming and other related videos.
We also suggest that the employment of BigBird
and SVM models in the structure of the ensemble
would increase the efficiency of VideoQA and the
classification of programming videos.

The CodeVidQA dataset facilitates advance-
ments in VideoQA systems by offering times-
tamped question-answers pairs for precise video-
based educational content retrieval. Similarly, the
CodeVidCL dataset supports the classification and
analysis of programming tutorial videos, enhancing
AI-driven educational applications. Both datasets
are publicly available on GitHub, promoting acces-



2

sibility and further research in the domain1.

2 Literature survey

2.1 Existing Datasets for VideoQA

One of the first novel datasets used for VideoQA
is the YouTube2Text(Guadarrama et al., 2013)
dataset, including 1,987 videos and 122,708 natu-
ral language descriptions. Other similar datasets
include Movie QA (Lei et al., 2019), VideoQA
(Mun et al., 2017), and TVQA+ (Kim et al., 2017)
covering different types of videos.

Further, MarioQA (Calzolari et al., 2020) is
based on a game, Pororo-QA (Gupta et al., 2023)
is based on cartoon and life scenarios like LifeQA
(Lei et al., 2018) and MedVidQA (Hamon et al.,
2017).

2.2 Video Question Answering in Natural Lan-
guage Processing

VideoQA is an extended problem in Natural Lan-
guage Processing NLP in which question answer-
ing is performed through the contents of the video
sequence. It is also divided into multi-choice QA,
where models choose from the options available
choices, and open-ended QA which involves gen-
eration, regression, or classification (Choi et al.,
2021).

The main problem of VQA is manifested in
the need to accurately identify the correct answers
based on the comprehension of the context of the
video. For example, the proposed models process
keyframes by using attention mechanisms, or ap-
ply knowledge-guided methods for further complex
queries. In particular, a Siamese Sampling and Rea-
soning (SiaSamRea) has been proven to achieve
initial success across multiple benchmarks, improv-
ing the performance on MSRVTT-QA(Xu et al.,
2017), MSVD-QA(Xu et al., 2017) and Activity
Net-QA(Yu et al., 2019) datasets(Yu et al., 2024).

2.3 Need for Programming-based Instruc-
tional Video QA Dataset

Simply predicting natural language answers to
most of the questions don’t reflect real-world inter-
action as people want to follow visuals step by step
along with textual answers. Therefore, recent devel-
opments in video question-answering systems on
specific domains like medicine, movies and games,
etc. there is need to design systems that are related
to programming. Although there are datasets for

1https://github.com/sanajavaid01/codevid-datasets

entertainment, such as MovieQA (Lei et al., 2019),
or TVQA (Tapaswi et al., 2016), there is a lack of
datasets specifically on programming instruction.

2.4 Need for Programming-Based Instruc-
tional Video Classification Dataset

A large amount of programming instructional
videos are used in the learning process to develop
programming skills, but there is a lack of efficient
methods for classifying them that need domain-
specific datasets for the Programming Video Clas-
sification task. This paper establishes that there
are several methods of classifying videos through
the use of video transcripts and contextual features.
Specifically, Kinetics (Lopez et al., 2007) which is
related to human actions and COIN (Gupta et al.,
2023) which consists of 11,827 instructional videos
collect from 12 domains.

3 Material and Methods

3.1 CodeVidQA Creation

The selection of several videos is required to con-
struct a high-quality programming instructional
VideoQA dataset from several general program-
ming languages and databases such as Java, Python,
JavaScript, MySQL, Oracle, and MongoDB, can
be selected.

Real-life questions, such as, “How can I use
queues in Laravel?” Counterarguments to the above
arguments can only be effected by practical imple-
mentation, as theoretical answers to the problems
can hardly be comprehended. The dataset creation
process is initiated by systematically pulling ques-
tions from the Stack Overflow website, where spe-
cific questions related to programming and non-
programming instructional were identified. After
that annotation was performed on programming
instructional videos extracted from YouTube that
results in the generation of question brackets to-
gether with timestamped answers by two program-
ming experts.

Both programming experts have more than two
years of experience in developing programs and
possess proficient knowledge of more than one
programming language. For annotation purposes,
programming instructional questions were divided
equally between both experts for the formulation
of the resulting dataset. The following schematic
outlines the key steps involved in the methodology
for the CodeVidQA dataset. Each component illus-
trates the processes and relationships integral to the



3

Figure 1: Schematic Overview of the Methodology for CodeVidQA Dataset

model development.
Step 1: Crawling Stack Overflow for program-

ming questions.
Step 2: Filtering programming instructional and

non-programming videos.
Step 3: Querying YouTube for relevant videos.
Step 4: Annotation Process: The expert formu-

lates the question and marks the answer timestamps
in the video.

Figure 1 shows the steps of workflow for creation
of CodeVidQA Dataset.

3.1.1 Extracting Stack overflow questions

Dataset generation begins with the collection of
programming-related questions from community
question-answering (CQA) platforms such as Stack
Overflow. As one of the largest CQA sites, Stack
Overflow comprises millions of questions posted
by developers.

We collected about 2,500 high-voted ques-
tions in different programming languages such
as HTML, JavaScript, and Python using the
Stack Overflow v2.3 API2 without limiting by
tags.Figure 2 shows the tag cloud of the tags against
questions extracted from tack Overflow API. Most
frequently occurring tags are JavaScript and Python
which are shown in larger font depicting the large
number of questions belong a specific language.
These extracted questions act as topics for search-
ing instructional videos.

2https://api.stackexchange.com/2.3/questions

Figure 2: Tag Cloud of frequently used tags against
Stack Overflow questions

3.1.2 Identification of relevant
programming-related questions

High-voted questions were collected from Stack
Overflow using the API and then identified as either
programming instructional or non-programming in-
structional. Questions like “Daylight saving time
and time zone best practices” or “What is the dif-
ference between POST and PUT in HTTP?” are
considered as non-instructional because they can
be demonstrated through theory without any im-
plementation. The task of categorization of the
questions was done manually by the programming
experts and they divided them into 1,946 ‘program-
ming instructional’ and 553 ‘non-programming in-
structional’. Figure 3 illustrates the distribution,
questions with tags JavaScript and Python account-
ing for 16.9% and 14.3%, and the questions with
tags Java and Git making up a part of 11% each.



4

Figure 3: Distribution of the instructional programming questions category collected from Stack overflow

3.1.3 Searching YouTube Videos Relevant to
Each Programming Instructional
Question

The next important process in dataset construction
is the process of collecting corresponding YouTube
videos associated with a particular Stack Overflow
question or topic. The following criteria were used
for selecting videos:

i. There have to be at least a thousand sub-
scribers of a channel from which the video
will be selected.

ii. Videos should be in English since the majority
of tutorials are in English (80%) then German
(4%) and Spanish (2%) (Kadriu et al., 2020).

iii. Subtitles should be on and are in the English
language.

iv. If a video does not contain a verbal explana-
tion it is considered non-instructional.

v. The Integrated Development Environ-
ment(IDE) has to be used for the implementa-
tion should be observable.

For each question or topic, a YouTube search
option is performed with the most relevant high-
quality video. Selection is made on CONTENT
only, PRESENTER’s way of teaching and AN-
SWERS provided are all from the first page results.

3.1.4 Expert Annotation for Programming
Instructional Videos

Programming experts need to identify videos as ei-
ther “programming instructional” or “programming
non-instructional” based on a YouTube search.
This important step is necessary because:

• Retrieve videos from the search may con-
tain theoretical communication rather than
programming against a specific programming
query.

• It is essential to ensure the reliability of pro-
gramming videos as instructional.

To identify a programming video as instructional
from the pool of YouTube videos, the following
criteria should be met:

i) Programming instructional videos should
demonstrate the implementation of a specific
problem that is queried using YouTube search,
yielding decent results for the problem.

ii) Programmers should clearly define each step
of the implementation using an Integrated De-
velopment Environment (IDE) and provide
reasoning for each step.

Programming instructional videos can be of any
level of expertise. Most programmers begin the
video with an introduction and end with conclud-
ing notes. Skip these sections while annotating
videos. Only the segment of the video where the



5

programmer provides proper steps for implementa-
tion considers the answer.

3.1.5 Formulating Instructional Questions
and Visual Answers from Videos

After defining what programming instructional
videos are, the following steps were followed to
generate programming-related questions and mark
their answers. A programming expert marked the
starting and ending timestamps of the answer and
formulated the question for annotated timestamps
along with the identification of the programming
language.Of course, the majority of questions were
about implementation, But basic notes or explana-
tions also apply to the videos, for instance, “How
do I align an element to the center in the horizontal
direction?”

For the majority of the cases, some questions
were either different or were of the same times-
tamps whereby some of the tutorials provide
around 15 questions. This approach serves to make
questions diverse to accommodate how developers
approach a problem only to find the same resulting
answers or solutions.

3.1.6 Creating dataset having a question and
respective answers

After formulating questions against timestamps,
the programming expert has to add the video Id,
question, starting timestamp, and ending timestamp
along with the programming language of the video
in an excel sheet. This resulted in the creation of
2,104 pairs of question and answers timestamps.
The programming language feature will help the
video question-answering system to search videos
against a specific language if the user mentions that
language in its query.

3.2 CodeVidCL Creation

A programming-based video (QA) system that aids
visual answers to programming-related questions
must be able to distinguish between “programming”
and “non-programming” videos. For building these
types of systems that can perform effectively on
datasets CodeVidCL needs to be created that can
train the system to differentiate between program-
ming and non-programming videos.

In the first step, a video classifier will be trained
that can be utilized to get a high-confidence video
category. In the second step, programming experts
validated the programming and non-programming

video categories predicted by the classifier and then
sampled those videos for the CodeVidCL dataset.

The following steps should be performed to
achieve the proposed solution for the creation of
CodeVidCL. Figure 4 shows the steps of workflow
follow for the creation of CodeVidCL Dataset.

Step 1: Collecting programming and non-
programming videos.

Step 2: Extracting subtitles of videos.
Step 3: Build an ensemble classifier based on

Big Bird transformers.
Step 4: Get the high confidence of the video

category.
Step 5: Validate predicted video categories and

add them to the dataset.

3.2.1 Collecting programming and
non-programming videos

To train the classifier, we need to collect program-
ming and non-programming videos for the train-
ing dataset that can be input for fine-tuning in the
classifier. We utilized 2,104 human-annotated pro-
gramming videos from the CodeVidQA dataset and
for non-programming videos, we sampled 3,795
videos from HowTo100M (Jang et al., 2017), which
is a large-scale YouTube dataset based on instruc-
tional videos from various categories like food,
art, craft, sports, cars and vehicles etc. There
are total of 143 categories in HowTo100M data
having 12,38,912 entries. Figure 5 shows num-
ber of entries against the top 20 categories. To
remove the imbalance between programming and
non-programming videos, the HowTo100M dataset
was reduced to get the equally distributed entries
against each category that resulted in 27 entries for
each category except Diwali(26 entries), School
Stuff(22 entries), Social Activism(15 entries)and
National Days(6 entries) categories.

3.2.2 Extracting subtitles for all video
A total of 6,104 collected videos in previous are
taken and pass to YouTube API to get subtitles. We
use the YouTube-transcript-API3 module of Python
to get subtitles of video along with many words.

Most of the videos have to disable transcripts or
use a language other than English for transcribing.
This type of video is eliminated from the dataset
based on the number of words. After doing all the
data cleaning, add one more column in the Python
dataframe with name category (programming, non-
programming) and class (1, 0).Using a stratified

3https://pypi.org/project/youtube-transcript-api/



6

Figure 4: Diagrammatic Representation of the Methodology for CodeVidCL Dataset

Table 1: Performance metrics for different models

Models Accuracy Precision Recall F1 Score
BigBird (bigbird-roberta-large) 99.61% 99.05 99.01 99.50

SVM 99.80% 99.81 99.81 99.81

Figure 5: Number of Entries against top 20 Categories
of HowTo100M

splitting, we utilized 20 % for testing, and 80 % of
the videos in the collection for training purposes.

3.2.3 Building Video Classifier
In the next step, a classifier is trained on training
dataset videos that are created in the previous step.
The subtitles are first extracted here because they
can be longer than 2000-3000 words. A classi-

fier based on a transformer, the BigBird(Zaheer
et al., 2020) model by Hugging Face 4 and SVM
are trained. SVM was used as a statistical clas-
sifier that is effective for categorization tasks, es-
pecially when the data is structured and separable
into distinct categories, which fits well for coarse-
grained categorization.BigBird was chosen as a
deep learning classifier due to its capability to han-
dle long-range dependencies and accommodate
long sequences like subtitles from videos. Big-
Bird is suitable for capturing context from the se-
quential nature of subtitles, which is common in
videos. The models above were combined in the
ensemble classifier, and majority voting is apply
in making the final forecasts. The subtitles were
extremely lengthy and hence, it was crucial to work
with large-grained categories such as programming
and non-programming.

BigBird is designed for sequence processing and
training on PyTorch. To combat class imbalance,
class weights were modified, early stopping was

4https://huggingface.co/google/bigbird-roberta-large



7

used and a variable learning rate was implemented.
Training settings were warm-up scheduler with 5
steps, weight decay of 0.0001, gradient accumula-
tion with 4 steps and mixed precision activated by
fp16. This model was trained for one epoch with a
batch size of four and was evaluated every 20 steps.

Labels in the SVM were represented numerically,
and the TF-IDF was used as features and balanced
class to address the issue of imbalance. Predictive
probabilities of the class distribution were com-
puted and the final Classifier uses votes between
BigBird and SVM predictions for accurate classifi-
cation. This approach enhances the performance of
these models making them a hybrid. Table 1, shows
the accuracies of fine-tuned BigBird and SVM.

3.2.4 Identification of relevant video
We selected a subset of YouTube8M’s(Abu-
El-Haija et al., 2016) computer-related, non-
programming videos as well as other Kaggle
datasets that have been expertly categorized by pro-
grammers.

We built a subset from YouTube8M and differ-
ent Kaggle datasets, such as YouTube data science5

and YouTube programming videos from free code
camp6, TED-ED7, and caption datasets8, after train-
ing our ensemble model. 5,722 videos were pro-
duced overall from this procedure, of which 3,120
were classified as programming and 2,602 as non-
programming.

3.2.5 Predicting Relevant Video Category
Using Video Classifier

In this step, we utilized an ensemble setting for
predicting videos with a high confidence vote on
the category for the dataset gathered in the previ-
ous step. The ensemble classifier predicted 1,751
programming videos and 2,540 non-programming
videos. To create a high-quality dataset, program-
ming experts only chose those videos to which the
classifier gives high confidence in the category.

3.2.6 Sampling High-Quality Video
In the last step, videos with a predicted category
and high confidence are validated and chosen by

5https://www.kaggle.com/datasets/sandhyakrishnan02/youtube-
datascience-video-views

6https://www.kaggle.com/datasets/nuhmanpk/all-
programming-tutorial-from-free-code-camp

7https://www.kaggle.com/datasets/hadilhagar/ted-ed-
dataset-acquired-via-youtube-api

8https://www.kaggle.com/datasets/shivendrra/youtube-
caption-dataset-for-finetuning-or-training

programming experts to create a high-quality Code-
VidCL dataset. This dataset contains the video title,
video Id, video category, subtitle, and number of
words in subtitles for each video.

4 Results & Analysis

4.1 CodeVidQA Analysis and Validation

When building CodeVidQA, we aim to compile
reliable programming courses from YouTube only.
This way we can say that a video is reliable if it has
more than a thousand subscribers, from a reliable
programming institute, from a famous programmer
or famous programming platforms like W3Schools,
Treehouse, etc. We collected 2,500 questions about
programming from Stack Overflow, selecting only
those that contain the instructions that can be illus-
trated in an IDE. Such theoretical questions as those
which do not require an answer in instructional sit-
uations were not included. The second phase only
included the instructional questions, therefore, we
have 2,104 paired questions and visual answers ob-
tained from 1, 363 instructional videos, making up
132 hours of video. Figure 7 and Figure 8 show the
answer duration of videos in seconds and the dis-
tribution of question length in CodeVidQA dataset
respectively. For Python alone, more than 400
pairs were produced and this was trailed by both
JavaScript and Flutter. Figure 6 shows the number
of question answers key pairs against programming
language.

Figure 6: Number of videos against each programming
language in CodeVidQA

For evaluation,100 questions are sampled that



8

Figure 7: Answer Duration Distribution of CodeVidQA

Figure 8: Question Length Distribution of CodeVidQA

are extracted from Stackoverflow and two program-
ming experts categorize them as instructional or
non-instructional. After categorizing those both
programmers are in same agreement except for a
few questions upon which theoretical and practi-
cal demonstration can be given. To validate the
dataset, 50 videos are sampled and ask both pro-
gramming experts to annotate answers along with
the formulation of questions. Semantic similarity
of formulated questions were assessed and the ab-
solute differences between answers timestamped
were calculated. The second assessment validates
their agreement on proving the precise and valid
answer timestamps from the videos. We found that
both the annotators formulated 80 and 67 questions,
and 54 out of them were semantically similar. The
CodeVidQA dataset’s quality is confirmed by these
evaluations.

4.2 CodeVidCL Analysis and Validation

To construct the CodeVidCL dataset, we took a se-
lection of human-annotated programming instruc-
tional videos from the CodeVidQA dataset and non-
programming videos from HowTo100M dataset
that is used as the training set for the CodeVidCL

dataset. To generate a validation and test set, we
sampled high-confidence videos that a video classi-
fier had predicted. To further evaluate CodeVidCL
dataset, we asked both the programming experts
to look over the video category that the model had
predicted on a dataset created from YouTube8M
and different Kaggle datasets .

The experts asked to update the category and
label videos as non-relevant if there is insufficient
data to categorize them into any of the categories
in case the video classifier incorrectly classifies
them. The final CodeVidCL collection contains
4291 videos, 2540 of which are non -programming
videos and the remaining ones are programming.

5 Conclusion

One of the most famous and actively developing
methods of obtaining knowledge is the use of on-
line instructional videos, especially in program-
ming. Video Question Answering (VideoQA) is an
essential research domain, that focuses on equip-
ping AI with the ability to interpret and engage with
visual information using natural language. How-
ever, VideoQA is significantly less investigated
than Image-QA, which creates difficulties for mod-
els to understand the content of videos and to an-
swer the queries. To fill these gaps, this research
proposes two datasets, CodeVidQA and CodeV-
idCL for programming instructional video question
answering and classification.

CodeVidQA contains 2,104 entries where each
entry represents an expert-curated programming
question-answers pair along with a video Id. More-
over, up to 99.61% accuracy has been achieved
after the training of the BigBird model and SVM
for the creation of the CodeVidCL dataset. These
results not only prove the applicability of the pro-
posed datasets but also open the research avenue
for the enhancements of future VideoQA systems
regarding the preciseness of response and richness
of the learning experience in programming through
videos.

6 Limitations

The existing dataset covers only a limited set of
programming languages for video classification
and question answering. A larger and more di-
verse dataset, such as CodeVidQA and CodeVidCL,
which spans a broad range of programming topics,
is needed. Additionally, result explainability is a
significant factor, as current models do not identify
the features that contribute to their predictions.



9

References
Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan,
and Sudheendra Vijayanarasimhan. 2016. Youtube-
8m: A large-scale video classification benchmark.
arXiv preprint arXiv:1609.08675.

Joel Brandt, Philip J Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R Klemmer. 2009. Two stud-
ies of opportunistic programming: interleaving web
foraging, learning, and writing code. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589–1598.

Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
Khalid Choukri, Christopher Cieri, Thierry Declerck,
Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, et al. 2020. Proceedings of the twelfth
language resources and evaluation conference. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference.

Seongho Choi, Kyoung-Woon On, Yu-Jung Heo, Ah-
jeong Seo, Youwon Jang, Minsu Lee, and Byoung-
Tak Zhang. 2021. Dramaqa: Character-centered
video story understanding with hierarchical qa. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 1166–1174.

Sergio Guadarrama, Niveda Krishnamoorthy, Girish
Malkarnenkar, Subhashini Venugopalan, Raymond
Mooney, Trevor Darrell, and Kate Saenko. 2013.
Youtube2text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot
recognition. In Proceedings of the 2013 IEEE Inter-
national Conference on Computer Vision, ICCV ’13,
page 2712–2719, USA. IEEE Computer Society.

Deepak Gupta, Kush Attal, and Dina Demner-Fushman.
2023. A dataset for medical instructional video clas-
sification and question answering. Scientific Data,
10(1):158.

Thierry Hamon, Natalia Grabar, and Fleur Mougin.
2017. Querying biomedical linked data with natural
language questions. Semantic Web, 8(4):581–599.

Phil Hill. 2014. Online educational delivery models: A
descriptive view.

Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim,
and Gunhee Kim. 2017. Tgif-qa: Toward spatio-
temporal reasoning in visual question answering. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2758–2766.

Arbana Kadriu, Lejla Abazi-Bexheti, Hyrije Abazi-Alili,
and Veland Ramadani. 2020. Investigating trends in
learning programming using youtube tutorials. Inter-
national Journal of Learning and Change, 12(2):190–
208.

Khushboo Khurana and Umesh Deshpande. 2021.
Video question-answering techniques, benchmark

datasets and evaluation metrics leveraging video cap-
tioning: a comprehensive survey. IEEE Access,
9:43799–43823.

Kyung-Min Kim, Min-Oh Heo, Seong-Ho Choi, and
Byoung-Tak Zhang. 2017. Deepstory: Video story qa
by deep embedded memory networks. arXiv preprint
arXiv:1707.00836.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
2018. Tvqa: Localized, compositional video ques-
tion answering. arXiv preprint arXiv:1809.01696.

Jie Lei, Licheng Yu, Tamara L Berg, and Mohit
Bansal. 2019. Tvqa+: Spatio-temporal ground-
ing for video question answering. arXiv preprint
arXiv:1904.11574.

Vanessa Lopez, Victoria Uren, Enrico Motta, and
Michele Pasin. 2007. Aqualog: An ontology-driven
question answering system for organizational seman-
tic intranets. Journal of Web Semantics, 5(2):72–105.

Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and
Bohyung Han. 2017. Marioqa: Answering questions
by watching gameplay videos. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2867–2875.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 4631–4640.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video question answering via gradually refined atten-
tion over appearance and motion. In Proceedings of
the 25th ACM international conference on Multime-
dia, pages 1645–1653.

Weijiang Yu, Haoteng Zheng, Mengfei Li, Lei Ji, Lijun
Wu, Nong Xiao, and Nan Duan. 2024. Learning from
inside: self-driven siamese sampling and reasoning
for video question answering. In Proceedings of the
35th International Conference on Neural Information
Processing Systems, NIPS ’21, Red Hook, NY, USA.
Curran Associates Inc.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. 2019. Activitynet-qa:
A dataset for understanding complex web videos via
question answering. Preprint, arXiv:1906.02467.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

https://doi.org/10.1109/ICCV.2013.337
https://doi.org/10.1109/ICCV.2013.337
https://doi.org/10.1109/ICCV.2013.337
https://arxiv.org/abs/1906.02467
https://arxiv.org/abs/1906.02467
https://arxiv.org/abs/1906.02467

	Introduction
	Literature survey
	Existing Datasets for VideoQA
	Video Question Answering in Natural Language Processing
	Need for Programming-based Instructional Video QA Dataset
	Need for Programming-Based Instructional Video Classification Dataset

	Material and Methods
	CodeVidQA Creation
	Extracting Stack overflow questions
	Identification of relevant programming-related questions
	Searching YouTube Videos Relevant to Each Programming Instructional Question
	Expert Annotation for Programming Instructional Videos
	Formulating Instructional Questions and Visual Answers from Videos
	Creating dataset having a question and respective answers

	CodeVidCL Creation
	Collecting programming and non-programming videos
	Extracting subtitles for all video
	Building Video Classifier
	Identification of relevant video
	Predicting Relevant Video Category Using Video Classifier
	Sampling High-Quality Video


	Results & Analysis
	CodeVidQA Analysis and Validation
	CodeVidCL Analysis and Validation

	Conclusion
	Limitations

