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Abstract
Generative visual language models (VLMs)
have recently shown potential across various
downstream language-and-vision tasks. At the
same time, it is still an open question whether,
and to what extent, these models can prop-
erly understand a multimodal context where
language and vision provide complementary
information—a mechanism routinely in place
in human language communication. In this
work, we test various VLMs on the task of gen-
erating action descriptions consistent with both
an image’s visual content and an intention or
attitude (not visually grounded) conveyed by a
textual prompt. Our results show that BLIP-2
is not far from human performance when the
task is framed as a generative multiple-choice
problem, while other models struggle. Further-
more, the actions generated by BLIP-2 in an
open-ended generative setting are better than
those by the competitors; indeed, human anno-
tators judge most of them as plausible contin-
uations for the multimodal context. Our study
reveals substantial variability among VLMs in
integrating complementary multimodal infor-
mation, yet BLIP-2 demonstrates promising
trends across most evaluations, paving the way
for seamless human-computer interaction.

1 Introduction

In recent years, transformer-based generative visual
language models (VLMs) have shown outstand-
ing results in many downstream tasks. Similar
to what has happened in NLP, where pre-trained
generative models have supplanted previous archi-
tectures thanks to their flexibility and portability,
VLMs have proven effective in solving language-
and-vision tasks by turning them into generative
problems. This is possible thanks to their massive
multimodal pre-training, which typically builds on
a pre-trained language model and image processing
model. This has enabled systems that can, in zero-
shot mode and without further fine-tuning, seam-
lessly describe the content of an image, answer

If I feel athletic. . . I will. . .

(a) stand and take
a break with the
baseball players ✗

(b) play baseball
with friends ✓

(c) play tennis
with friends ✗

Figure 1: We test generative visual language models’
(VLMs) abilities to combine complementary informa-
tion brought into context by the two modalities. In this
example from the BD2BB dataset (Pezzelle et al., 2020)
(slightly edited for space reasons), only one of the ac-
tions on the right, (b), is consistent with both the textual
prompt and the image on the left. As for (a) and (c), they
are plausible based on the image or the textual prompt,
respectively, but not on the combination of both.

questions about it, or engage in a dialogue (see
Caffagni et al., 2024, for an overview). This might
suggest that VLMs have skills similar to those
needed for meaningful multimodal communication.

In real-life multimodal communication, human
speakers continuously integrate complementary in-
formation from various modalities, including lan-
guage and vision, to understand and convey mes-
sages and properly act in various situations (Partan
and Marler, 1999; Benoît et al., 2000; Forceville,
2020). An example of such complementarity is
shown in Figure 1: If someone observing the scene
depicted in the image feels athletic, they would
likely take an action that is consistent with both the
visual content and their attitude or intention, i.e.,
play baseball with friends. In contrast, actions that
are plausible given either the image or the textual
intention, but not both, would not be considered.
Note that making this type of inference is also key
for any multimodal model that aims to be com-
municatively plausible and useful. Consider the
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case of a virtual assistant that has access to the vi-
sual context and a spoken or written request from
a user. If asked to recommend an appropriate ac-
tivity to do—Hey, I feel adventurous today. What
do you recommend I do?—the assistant should sug-
gest something appropriate to the context surround-
ing the user and obviously in line with their atti-
tude. Despite the relevance of the problem, only
a few studies have investigated, to date, whether
language-and-vision models master this ability. Be-
fore the generative ‘revolution’ that has recently
affected VLMs, Pezzelle et al. (2020) proposed
the Be Different to Be Better (BD2BB) benchmark
(see an example in Figure 1) to test the ability of
multimodal encoders such as LXMERT (Tan and
Bansal, 2019) to integrate complementary informa-
tion. In that study, these models were shown to lag
far behind human intuitions, leaving ample room
for improvement in future systems. To the best
of our knowledge, no subsequent work addressed
whether generative VLMs have filled this gap.

In this research, we use the BD2BB benchmark
and test how several generative VLMs deal with it.
We do so employing two main experiments. First,
we challenge the models to solve the task in its
original multiple-choice format, i.e., by picking,
for a given image, one among 5 candidate actions
(I will. . . ) that we give to the model via prompting
together with the intention (If I. . . ). We evaluate
model performance in terms of accuracy, that we
measure both extrinsically (considering the label,
corresponding to a given action, that is output by
the model) and intrinsically (looking at the proba-
bility assigned by a model to each action following
the same intention). Second, we test VLMs in the
setup that best suits them, that is, by letting them
generate an action based on the image and the in-
tention. In this case, we assess model performance
using both a reference-based, automatic metric (we
compute BERTScore similarity between the gener-
ated action and the target one from BD2BB) and
a reference-free, human-based evaluation (we ask
annotators to judge whether a certain action is good
for a given <image, intention> pair).

The results of our first experiment show that,
while most tested models hover around the chance
level, BLIP-2 achieves fairly high accuracy, much
closer to human performance than LXMERT (re-
ported in Pezzelle et al., 2020). Similarly, in our
second experiment, the actions generated by BLIP-
2 are deemed plausible by human participants in

most cases, which is not the case for other mod-
els. Taken together, these results highlight sub-
stantial variability across VLMs in their ability to
combine complementary multimodal information.
At the same time, the promising trends exhibited
by BLIP-2 reveal that this model is capable of
understanding—to some extent—the visual scene,
the intention, and their complex interaction.

2 Related Work

2.1 Generative Language-and-Vision Models

With the introduction of Transformers (Vaswani
et al., 2017), NLP research has experienced un-
precedented development. This, in turn, influenced
the work on language and vision processing, which
followed the same ‘evolutionary’ steps. First, based
on Masked Language Models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
the community proposed many multimodal en-
coders, either single-stream (i.e., jointly processing
language and vision from the beginning), such as
UNITER (Chen et al., 2020), VL-BERT (Su et al.,
2019), and VisualBERT (Li et al., 2019), or dual-
stream (i.e., processing language and vision sepa-
rately, and later combining them through a series
of multimodal layers), such as LXMERT (Tan and
Bansal, 2019) and ViLBERT (Lu et al., 2019).

Later, in the wake of the success of autore-
gressive Large Language Models (LLMs) such as
GPT (Radford et al., 2019), OPT (Zhang et al.,
2022) or LLaMA (Touvron et al., 2023), the
language-and-vision community has taken a gener-
ative direction. With such an approach, answering
questions about an image (VQA) or describing its
content (IC) can be done by simply feeding the
model with the image and the appropriate prompt.
Various generative language-and-vision models
have been proposed in recent years, such as BLIP-
2 (Li et al., 2023), Flamingo (Alayrac et al., 2022),
FROMAGe (Koh et al., 2023), MAPL (Mañas et al.,
2022), and IDEFICS (Laurençon et al., 2023). In
general, a common feature of all these models
is that they leverage a pre-trained text-only LLM
and a visual encoder, on top of which a relatively
lightweight trainable network is learned. Such a
network—which can consist of a bunch of Trans-
former (BLIP-2, Flamingo, IDEFICS), fully con-
nected (MAPL), or linear layers (FROMAGe)—is
responsible for connecting the two modalities and
making the model capable of solving multimodal
tasks. Using this strategy, generative language
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and vision models have achieved results never ap-
proached before (e.g., when introduced, Flamingo
was the best-performing model on 16 multimodal
tasks). Furthermore, their architecture makes these
models much more flexible and portable than their
predecessors, as they can be applied, without any
fine-tuning, to virtually any unseen task.

2.2 Complementary Language and Vision

The models described above have been quite exten-
sively tested in various downstream tasks, such as
Visual Question Answering (Antol et al., 2015) and
Image Captioning (Bernardi et al., 2016), which
typically require dealing with aligned information
from language and vision. To illustrate, these tasks
challenge the models to locate a phrase or sentence
in the image, retrieve information from it, or verify
that what is depicted complies with a description.
Comparably less attention has been paid to assess-
ing whether, and to what extent, they can genuinely
combine complementary information from the two
modalities—something necessary, e.g., to generate
a plausible action for the example in Figure 1.

This ability is certainly necessary for tasks such
as Visual Dialog (Das et al., 2017; Mostafazadeh
et al., 2017) or Visual Storytelling (Huang et al.,
2016; Hong et al., 2023). In the former, multi-
modal models are asked to maintain a meaningful
conversation starting from the contents of an im-
age, which requires more than simply describing
visible aspects. As for the latter, the goal is to
produce a story based on a sequence of images.
Again, this task requires not only understanding
the visual content (which is, however, crucial; see
Surikuchi et al., 2023), but also making inferences
over people’s emotions and feelings, understanding
social dynamics, and so on. These are challeng-
ing tasks for large multimodal models, which were
recently shown to have little social awareness and
struggle with recognizing subtle and culturally di-
verse emotions (Deng et al., 2023). Similarly, these
models face difficulties in handling semantically
underspecified language (where the language signal
needs to be complemented by extra information,
e.g., visual info; see Pezzelle, 2023); moreover,
they have trouble understanding humor (Hessel
et al., 2023), an aspect of multimodal language
use that can only be mastered by going beyond the
literal (i.e., image-aligned) meaning of a sentence.

To explore more complementary scenarios, var-
ious directions have been taken. These include

approaches to Image Captioning that are sensitive
to the context and communicative purpose of the
captions (Kreiss et al., 2021, 2022); tasks that chal-
lenge the models to predict something external to
the multimodal sample, such as the motivation or
intent of a social media post (Kruk et al., 2019), or
the cause or consequence of an event (Hessel et al.,
2022); datasets to test complex inference abilities
in multimodal setups, such as predicting the next ut-
terance or frame in a comic strip (Iyyer et al., 2017).
BD2BB (Pezzelle et al., 2020) also belongs to this
latter category, as it challenges models to predict
what comes next based on both grounded (the im-
age contents) and non-grounded information (the
textual intention). In this work, for the first time,
we study how generative visual language models
deal with complementary multimodal information.

3 Methods

3.1 Data

We use the BD2BB dataset and corresponding
multiple-choice task (Pezzelle et al., 2020). The
task is exemplified in Figure 1: given an image
and a textual intention (If I...), a model must select
the correct action (I will. . . ), i.e., the one that com-
plies with both the visual and textual information.
Note that, in BD2BB (and differently from what
is shown in the figure), each sample comes with
5 candidate options—two that are valid given the
image only (so-called visual decoys), two that are
valid given the intention only (language decoys),
and the correct one. The images in BD2BB come
from a subset of COCO images (Lin et al., 2014) de-
picting at least one person.1 The dataset, collected
via crowdsourcing and further post-processed, in-
cludes around 10K <image, intention, candidate
actions> samples. In this work, we test models in
a zero-shot setup (without training or fine-tuning
them) on the test set, which includes 4081 samples.

3.2 Models

We experiment with four state-of-the-art, open-
source generative VLMs, i.e., MAPL, FROMAGe,
BLIP2, and IDEFICS. As mentioned in Section 2.1,
these models are all based on a similar architec-
ture that leverages two frozen pre-trained unimodal
models (a language and a vision one) and learns
a relatively lightweight mapping network on top
of them. Below, we briefly describe these models

1This choice is meant to increase the likelihood of interact-
ing with these images by performing some action.
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MAPL FROMAGe BLIP-2 IDEFICS
Underlying language model GPT-J OPT OPT / FlanT5 LLaMA
Underlying vision model Vit-L14 Vit-L14 Vit-L14 / Vit-G14 OpenClip5

Mapping network’s architecture Fully connected layers Linear layers Transformer Transformer
# trainable parameters 3.4M 5.5M 188M 1.4B
Generated output Text Text / Image Text Text
COCO images in VLM training? No No Yes No
COCO images in vision model training? No No No No

Table 1: A comparison of the four VLMs used in this work concerning some of their main features.

from smallest to largest in terms of learnable param-
eters. For convenience, we provide an overview
of their most important features in Table 1. We
refer the reader to the original papers for further
details on each model’s architecture, training data,
and optimization strategies.

MAPL (Mañas et al., 2022) builds on
CLIP (Radford et al., 2021) and GPT-J (Wang
and Komatsuzaki, 2021) as a visual and language
frozen model, respectively. The trainable network
to map visual features into token embeddings con-
sists of a few fully connected layers with ReLU
activations (Nair and Hinton, 2010) and dropout
regularization (Srivastava et al., 2014). With only
trainable 3.4M parameters, this network is the light-
est of the four we use in this work.

FROMAGe (Koh et al., 2023) leverages CLIP
Vit-L14 (Radford et al., 2021) and OPT (Zhang
et al., 2022) as its frozen visual and language
model, respectively. The projection of the image
and text representations into a common latent space
is done through several trainable linear layers. This
makes this model lightweight, with only 5.5M train-
able parameters. Among the four models we use,
FROMAGe is the only one capable of producing
outputs including both text and images.

BLIP2 (Li et al., 2023) bootstraps language-and-
vision representations from the underlying frozen
pre-trained unimodal models via a Transformer-
based network. It allows using various underlying
frozen models: CLIP Vit-L14 (Radford et al., 2021)
or Vit-G14 from EVA-CLIP (Fang et al., 2023)
on the vision side; OPT (Zhang et al., 2022) or
FlanT5 (Chung et al., 2022) on the language side
(here, we use the version with FlanT5 and Vit-G).

The multimodal mapping is carried out by a train-
able Querying Transformer (Q-Former) network.
The Q-Former includes two transformer submod-
ules sharing self-attention layers: an image trans-
former interacting with the frozen image encoder

for visual feature extraction, and a language trans-
former serving as both a text encoder and decoder.
It is worth noting that, among the four models here
considered, BLIP-2 is the only one also trained
with images from COCO (Lin et al., 2014), i.e., the
images used to build the BD2BB dataset. Though
the model has not seen the BD2BB data, it could
still have an advantage over other architectures.

IDEFICS (Laurençon et al., 2023) is an
open-access re-implementation of the Flamingo
model (Alayrac et al., 2022) which leverages
LLaMA as the language model (Touvron et al.,
2023) and OpenClip5 (a model pre-trained with a
contrastive text-image approach, similar to CLIP
Radford et al., 2021) as the vision model. Simi-
lar to BLIP-2, IDEFICS uses a Transformer-based
architecture to connect language and vision. In par-
ticular, it employs a Perceiver Resampler module
to map varied-size vision features to a few tokens,
which are then used to condition the frozen LM
through cross-attention layers. We employ the 9B
parameter instructed version with 1.4B trainable pa-
rameters, nearly 10 times more than BLIP-2. This
makes IDEFICS the largest model we consider.

3.3 Experimental Settings
We test the four models in two experiments: a
multiple-choice experiment (Section 4) and an
open-ended generative experiment (Section 5). In
both experiments, we test the pre-trained models
in a zero-shot manner.2 That is, we do not further
train or fine-tune them.3 We ran the models on an
A1000 GPU using their default hyperparameters
to ensure deterministic results. We also conducted

2The pre-trained models can be downloaded from:
https://github.com/octarinesec/MAPL (MAPL)
https://github.com/kohjingyu/fromage (FROMAGe)
https://huggingface.co/docs/transformers/en/
model_doc/blip-2 (BLIP-2)
https://huggingface.co/docs/transformers/en/
model_doc/idefics (IDEFICS)

3Data and code available at: https://github.com/
baiyuyu/VL-complementary-infomation

https://github.com/octarinesec/MAPL
https://github.com/kohjingyu/fromage
https://huggingface.co/docs/transformers/en/model_doc/blip-2
https://huggingface.co/docs/transformers/en/model_doc/blip-2
https://huggingface.co/docs/transformers/en/model_doc/idefics
https://huggingface.co/docs/transformers/en/model_doc/idefics
https://github.com/baiyuyu/VL-complementary-infomation
https://github.com/baiyuyu/VL-complementary-infomation
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the multiple-choice experiment with other hyperpa-
rameter settings (see Appendix A).

4 Multiple-Choice Experiment

We test the four generative models in the original
BD2BB multiple-choice classification task. Here,
together with the intention and the image, we pro-
vide the model with the five candidate actions and
task the model to select the correct one. We evalu-
ate model performance in terms of accuracy, which
we measure both intrinsically and intrinsically. Be-
low, we describe the two evaluations in more detail.

Extrinsic evaluation Given an <image, intention,
actions> sample, we ask the models to provide the
correct action via prompting. Since we present
the candidate actions as options preceded by an
alphabet letter (A-E), models are expected to out-
put the letter corresponding to the action they con-
sider correct. To elicit model responses, we used
the following template, filled with the intention,
the five actions, and a prompt describing the task:
"[intention], [prompt]: A. [action1] B. [action2] C.
[action3] D. [action4] E. [action5]". Given this tem-
plate, we experiment with 30 prompts (provided in
Appendix B) and compute average accuracy and
standard deviation over them. An example of a tem-
plate filled with all information for one dataset’s
sample is the following (we give the prompt in
italic): "If I feel adventurous, what should I do?
Choose the best option from the following: A. I will
ride an elephant. B. I will merely watch my friend
fly an animal kite. C. I will go bird watching on
an outdoor public patio. D. I will ride a horse like
the man. E. I will stand and observe the zebras."
Such experimental setup assumes that each of the
four models can provide answers in the form of a
single letter. However, in practice, the raw outputs
often contained additional text that required some
post-processing to extract the relevant letter. For
instance, the IDEFICS model generated responses
structured as "Question: . . . Assistant: E". For
those cases, we employed a cleaning step based on
hard-coded rules to remove the surrounding text,
ensuring only the answer ("E") was retained.

Intrinsic evaluation Given an <image, intention,
actions> sample, we consider its 5 <intention, ac-
tion> pairs and compute the cross-entropy loss be-
tween each of these sequences (we concatenate the
intention and the action) and the image. To do so,
we first obtain the logits from the model’s final

Model Accuracy
intrinsic extrinsic

LXMERT* 62.2
CLIP 53.2
MAPL 63.1 22.0±0.8
FROMAGe 47.9 20.0±0.5
BLIP-2 42.0 75.7±0.8
IDEFICS 63.7 35.5±7.2
Humans* 79.0

Table 2: Multiple-choice experiment. Intrinsic and ex-
trinsic model accuracy. Numbers in bold are the highest
in the column. *Results from Pezzelle et al. (2020).

hidden layer for the current input sequence. Then,
we calculate the cross-entropy loss between these
logits and the target tokens. The total cross-entropy
loss for a sequence is the sum of the losses at each
word position. The sequence with the lowest cross-
entropy loss is selected as the model answer. These
predictions are used to compute model accuracy.

4.1 Results

In Table 2, we report the extrinsic and intrinsic
accuracy of each tested model. We compare our
results with those by humans and the pre-trained
LXMERT (Tan and Bansal, 2019) (best-performing
in Pezzelle et al., 2020), as they are given in the
BD2BB paper. As an additional baseline, we report
the results by CLIP (Radford et al., 2021), which
we obtain by computing the CLIPScore (Hessel
et al., 2021) (quantifying the plain degree of align-
ment between the visual and textual inputs) be-
tween the image and each of the <intention, action>
pairs, fed to the model as a sequence. By looking
at the numbers in the table, we identify a few key
findings, that we summarize below.

BLIP-2 approaches human performance in the
extrinsic evaluation The first key finding of our
experiment concerns the performance of BLIP-2
in the extrinsic evaluation: the model achieves an
average accuracy of 75.7%, i.e., only 3 accuracy
points far from human performance. This means
that, for more than 3 samples out of 4, the model
identifies the correct action for a given <image,
intention> pair. This result is even more remark-
able considering that the other three models do
not fare much better than chance in this evalua-
tion setting. As mentioned in Section 3.2, BLIP-
2 is the only model trained with COCO images
(though, crucially, none of the tested models, in-
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Figure 2: Multiple-choice experiment. Distribution of
correct and wrong answers by BLIP-2 (top) and FRO-
MAGe (bottom) against their position (A-E) in the tem-
plate. While BLIP-2 has only a minor bias toward first-
position answers, FROMAGe is heavily biased.

cluding BLIP-2, have ever seen the BD2BB data).
Moreover, BLIP-2 is the only one leveraging a
language model, FlanT5, which was instruction-
finetuned on a mixture of tasks. Therefore, it is
reasonable to hypothesize both these aspects could
give an advantage to BLIP-2 over the other models.
We leave to future work an extensive exploration of
this issue, which is outside the scope of this work.

Some VLMs are biased towards early-presented
options Upon manual inspection of the model-
generated outputs in the extrinsic evaluation, we
noticed a bias of MAPL, FROMAGe, and IDEFICS
toward predicting the actions presented earlier in
the template; that is, these models appeared to pre-
fer A over E. To quantify this effect, we calcu-
lated, for each model, the percentage of predicted
responses based on their position. In Figure 2, we
visualize the results for FROMAGe (MAPL and
IDEFICS exhibit a very similar pattern), which we
plot against the behavior of BLIP-2. As can be
seen, FROMAGe is heavily biased toward the first
positions/letters in the template, while BLIP-2 is
not, or to a much lesser extent. This striking differ-
ence highlights that, while BLIP-2 can treat each
action in the template (almost) equally, this is not
the case for the other models. This is likely one of
the reasons for the success of this model.

BLIP-2 Humans*
multimodal 75.7±0.8 79.0
language-only 59.1±0.4 50.0
vision-only 57.0±2.5 72.3

Table 3: BLIP-2 and human accuracy in three settings:
multimodal, language-only, and vision-only, evaluated
extrinsically. *From Pezzelle et al. (2020).

VLMs do not overtly outperform LXMERT in
the intrinsic evaluation When evaluated intrinsi-
cally on the task, generative VLMs do not exhibit a
generalized advantage over the previous-generation
models. While MAPL and IDEFICS do perform
slightly better than LXMERT (see Table 2), this
is not the case for FROMAGe and BLIP-2 (note,
though, that in an additional experiment, we found
that BLIP-2 with underlying OPT achieves better
accuracy: 62.4%). This suggests that generative
VLMs may not, by default, be necessarily better
encoders than previous models, in line with what
was discussed by BehnamGhader et al. (2024) for
text-only LMs. At the same time, all VLMs except
FROMAGe outperform CLIP, which reveals that
the cross-modal scores we obtain from them encode
more than simple image-text alignment, which is
all that CLIP captures. This provides indirect proof
that VLMs can, to some extent, combine comple-
mentary information from the two modalities.

4.2 Is BLIP-2 Using the Multimodal Context?
As discussed above, BLIP-2 achieves near-human
accuracy in the multiple-choice experiment when
evaluated extrinsically. In this analysis, we explore
whether this performance is due to genuine integra-
tion of language and vision or biases and shortcuts
exploited in one of the two modalities. To do so,
we run the same experiment in two additional set-
tings: (1) a language-only one, where we provide
the model with the intention and the actions, but
not the image; (2) a vision-only one, where we pro-
vide the model with the image and the actions, but
not the intention (see the prompts in Appendix C).
If the model genuinely leverages the two modali-
ties, it should perform worse in both these settings
than the multimodal one, where both the image and
the intention are given as input. The results of this
analysis are presented in Table 3.

As can be seen, the model fed with the mul-
timodal input neatly outperforms both unimodal
settings. This reveals that jointly leveraging infor-
mation conveyed by the image and the intention is
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beneficial to solving the task, a pattern that is also
observed in human behavior. Compared to humans,
however, BLIP-2 exhibits a slight advantage in the
language-only setting and a large disadvantage in
the vision-only setting. This pattern suggests, on
the one hand, that the underlying FlanT5 language
model might be driven by some biases and default
choices when performing the inference task; on the
other hand, its image processor is less capable than
humans to understand the subtleties of a scene and
which actions it pragmatically licenses.

In Appendix D, we present the results of an ad-
ditional analysis that further investigates whether,
and when, the model leverages complementary in-
formation or simply counts on a single modality.

5 Open-Ended Generative Experiment

In the multiple-choice experiment, only BLIP-2,
but none of the other models, is extrinsically good.
At the same time, most VLMs can assign a higher
probability to the correct action in many cases. This
discrepancy is likely due more to how the different
models have been trained and designed than to
what the models do or do not know. Moreover,
we acknowledge that a multiple-choice scenario is
not the most naturalistic way to interrogate these
models. To overcome these issues, in the second
experiment, we feed the VLMs with the image and
the intention and let them generate an open-ended
continuation. This is a more straightforward way
to assess the models, but it poses challenges on
the evaluation side. Below, we describe the two
methods we use to evaluate model performance.

Reference-based evaluation In this evaluation,
we take the continuation generated by a model and
compare it to each of the five candidate actions in
the sample. We make the simplistic assumption
that, if the generated action is good, it should be
more similar to the correct action than the decoy
actions. This assumption allows us to compute
model accuracy: we consider the model correct
every time the similarity between the generated
and correct actions is the highest in the batch.

Intuitively, the choice of the prompt to use to
elicit a continuation from a model plays a big role.
Indeed, we noticed that some prompts may be ef-
fective for some models, but not for others. After a
careful, manual exploration of prompts, we focused
on four that appeared to be good-performing across
models. We provide further details about this ex-
ploration and the actual prompts in Appendix C.

Model Accuracy
MAPL 32.9±8.7
FROMAGe 32.7±4.8
BLIP-2 49.5±2.6
IDEFICS 31.5±10.9

Table 4: Open-ended generative experiment. Reference-
based accuracy is computed using BERTScore similar-
ity. Average and std. over results for 4 different prompts.

To compute similarities, we used various com-
mon NLG metrics, including BLEU4 (Papineni
et al., 2002), ROUGE (Lin, 2004), CIDER (Vedan-
tam et al., 2015), Meteor (Banerjee and Lavie,
2005), and the more recent BERTScore (Zhang
et al., 2019). While the scores by various metrics
can be different, we observed that various metrics
led to similar patterns. Therefore, from now on, we
only focus on BERTScore and refer the reader to
Appendix E for further details on other metrics.

Reference-free evaluation Evaluating model
outputs using automatic, reference-based metrics is
simplistic as it assumes that only an action that is
similar to the target one is a good one. To evaluate
the plausibility of the actions in a reference-free
manner, we therefore carried out a human evalua-
tion. We sampled 50 <image, intention, generated
action> datapoints per model and presented them,
one at a time, to six participants.4 We asked them
to judge whether the second part of the sentence
(displayed in bold), i.e., the generated action, was
a plausible continuation of the first part, i.e., the
ground-truth intention, based on the contents of
the image. As the question was binary, they could
choose between the options Yes or No. To ensure
the quality of human annotations, we added 20
clear-cut cases to the data (10 correct, 10 wrong),
that we used as a control group. All participants
achieved high accuracy (≥ 75%) on these control
samples. In total, each participant assessed 220
samples (200 model-generated + 20 control ones).

5.1 Results

Table 4 and Figure 3 report, respectively, the results
of the reference-based and reference-free evalua-
tion. Below, we summarize the main findings.

4Participants were recruited among colleagues at our insti-
tution and carried out the annotation voluntarily. They were
informed about the use of the annotations they provided and
agreed to their use through informed consent.
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Figure 3: Open-ended generative experiment.
Reference-free accuracy is based on human judgments,
300 per model (i.e., one per assessed sample).

BLIP2 is the best-performing model accord-
ing to both evaluations Based on the results of
both evaluations, BLIP-2 appears to be the best-
performing model in this experiment. Indeed, this
model achieves the highest average reference-based
accuracy (49.5%) across the board, outperforming
the other models by nearly 20 accuracy points. As
for the reference-free evaluation, human partici-
pants judge BLIP-2’s generated actions as plau-
sible in 77% cases. This is a remarkably higher
accuracy than the one obtained by the other mod-
els, whose accuracy ranges between 40 and 45%.
These results confirm the superiority of BLIP-2
in generating actions consistent with both a visual
context and a non-grounded textual intention.

BLIP-2’s abilities can also be appreciated by
looking at cases where it generates actions that are
judged implausible by human annotators, as the
one in Figure 4. Here, given the intention If I want
to socialize, the model generates a good action,
which is also consistent with the scene content—a

If I want to socialize. . .

If I want to . . .

Ground-truth
I will play the
Wii with my
friends

BLIP-2
I will play pool
with the guys ✗

Figure 4: An example of an action generated by BLIP-2.
In this case, the human annotators considered this action
implausible given the intention and the image.

pool in the foreground and several people standing
around it. However, in this case, this action is prag-
matically implausible, as the people in the image
are busy playing video games. From this single
example, it appears that the strengths of BLIP-2 lie
in its ability to understand the scene, the intention,
and their complex interaction. On the other hand,
there is room for improvement in understanding the
dynamics of events and relationships between peo-
ple conveyed by an image. Improving this aspect
can be a good direction to develop semantically
valid and pragmatically plausible models.

Other models perform similarly (poorly) As
for MAPL, IDEFICS, and FROMAGe, it can be
noted that their performance is similar according to
both evaluations. This is interesting as the models
build on different language and vision models, have
varying sizes, and are trained with different data.
Once again, this observation seems to reiterate the
peculiarity of BLIP-2 compared to other architec-
tures, from which it differs by the instruction-tuned
LM and the presence of COCO in the training data.

6 Conclusion

In this work, we focused on the problem of com-
bining complementary information brought to a
context by language and vision. We used a bench-
mark proposed for previous-generation multimodal
models, i.e., language-and-vision encoders based
on the Masked Language Modeling objective, and
tested, for the first time, how state-of-the-art gen-
erative visual language models deal with it. We
presented a set of innovative analytical methods
designed to assess the ability of multimodal gener-
ative models to integrate complementary informa-
tion effectively. Through both multiple-choice eval-
uations and open-ended generative experiments,
our approach offers a novel perspective on the chal-
lenges and capabilities of these models in achieving
true multimodal integration. In our experiments,
we found that the BLIP-2 performs consistently
and significantly better than competing models.
While most generative VLMs struggle, this model
achieves both near-human accuracy in the multiple-
choice experiment and high human judgments in
the open-ended generative experiment. This reveals
the superiority of this model on the task, likely due
to instruction finetuning and having seen COCO
images in training. These two ingredients appear
to be key for the model, which exhibits a deep un-
derstanding of the image, the textual intention, and
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the complex interaction between them. Based on
these findings, we conjecture that this recipe—and,
particularly, instruction finetuning—may help mod-
els develop better generalized semantic and prag-
matic abilities. These skills are crucial to language-
mediated communication; future work might ex-
tend our investigation to other scenarios, includ-
ing more naturalistic ones. Similarly, future work
should focus on a comprehensive evaluation of the
impact of seeing the same images encountered dur-
ing training. While the BD2BB task here explored
is a different one than plain image captioning, this
aspect surely deserves further attention.

We argue that future work should focus on build-
ing more datasets and resources that encompass
complex interactions between image content and
its accompanying text. This implies taking a more
communicative perspective on the study of lan-
guage in multimodal contexts, which is what is
needed to develop linguistic technologies ready to
communicate seamlessly with human users.

Limitations

Our investigation is limited to one (English) dataset
and a handful of models. This narrows the scope of
the findings we presented. While our approach can
be easily applied to other resources, languages, and
models, we acknowledge that the claims made in
this paper may not necessarily generalize. Another
limitation is the choice of prompts used to elicit
the responses from the models. There is growing
evidence of the significant role of prompt word-
ing on model generation, that we fully recognize.
Although we believe we conducted a fairly compre-
hensive prompt search, our results can only speak
for the prompts we used. Furthermore, the human
evaluation we conducted is arguably small-scale as
it involves few participants and a relatively small
number of samples. We cannot fully exclude that
the reported patterns may not replicate when in-
creasing the number of participants and stimuli.
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A Different Parameter Combinations for
Multiple-Choice Experiment

We tested each model’s most promising prompt
with 4 different parameter combinations. The re-
sults are shown in table 5.

- FROMAGe BLIP2 IDEFICS
Default parameter 20.5 77.1 42.1
Temp = 0.8,topp = 0.8 19.7 75.9 33.1
Temp = 0.8,topp = 0.9 17.8 74.3 30.0
Temp = 0.8,topp = 0.8 17.7 75.2 30.5
Temp = 0.8,topp = 0.8 17.7 73.5 28.3

Table 5: The results for 3 generative models in discrimi-
native setting across different parameter combinations

B 30 Prompts for Multipul-Choice
Experiment

1. What am I supposed to do <intention>? <can-
didate actions>

2. What am I supposed to do <intention>? Pick
the best option from the following ones: <can-
didate actions>

3. Question: What am I supposed to do <inten-
tion>? Pick the best option from the following
ones: <candidate actions> Answer:

4. Given this visual context, what am I supposed
to do <intention>? Pick the best option from
the following ones: <candidate actions>

5. What am I supposed to do given this visual
context, <intention>? Pick the best option
from the following ones: <candidate actions>

6. Suppose I am faced with this situation. What
am I supposed to do <intention>? Pick the
best option from the following ones: <candi-
date actions>

7. What action will I perform <intention>? Pick
the best option from the following ones: <can-
didate actions>

8. Suppose I am faced with this situation. What
actions should I perform <intention>? Pick
the best option from the following ones: <can-
didate actions>

9. Imagine I am in this visual scenario. What
action should I perform <intention>? Pick the
best option from the following ones: <candi-
date actions>

10. What actions should I perform <intention>?
Considering both my feeling and the image,
pick the best option from the following ones:
<candidate actions>

11. Considering both my feeling and the image,
what will I do <intention>? Pick the best op-
tion from the following ones: <candidate ac-
tions>

12. What will I do <intention>? Pick the best
option from the following ones: <candidate
actions>

13. <intention>, what’s the best step to take? Se-
lect the optimal choice from the options pro-
vided.<candidate actions>

14. <intention>, what’s the most suitable action
to choose? Select the best option from the
following list.<candidate actions>

15. <intention>, what’s the recommended action
to perform? Choose the best option from the
following ones.<candidate actions>

16. Which action is most advisable <intention>?
Choose from the following options. <candi-
date actions>

17. What’s the best step to follow <intention>?
Pick from the following options. <candidate
actions>

18. <intention>, what’s the most appropriate deci-
sion to make? Select the right choice from the
options provided. <candidate actions>

19. What’s the recommended response <inten-
tion>? Choose from the following options.
<candidate actions>

20. What should I do <intention>? Choose from
the following options considering both my
feeling and the image.<candidate actions>

21. Taking into account both my feeling and the
image, what’s the recommended step to take
<intention>? Pick from the following options.
<candidate actions>

22. Considering equally the image and my feel-
ing, what should be my action <intention>?
Choose the right action from the following
list.<candidate actions>
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23. With both the image and my feeling in mind,
how should I react <intention>? Select the
best choice from the following options. <can-
didate actions>

24. With both the image and my feeling in mind,
what action is most advisable <intention>?
Choose from the following options. <candi-
date actions>

25. When taking both the image and my feeling
into consideration, what’s the best step to fol-
low <intention>? Pick from the following
options.

26. <intention>. <candidate actions>

27. <intention>, what happens next? <candidate
actions>

28. <intention>, what will I do? <candidate ac-
tions>

29. What will I do <intention>? <candidate ac-
tions>

30. How should I behave <intention>? <candidate
actions>

C 4 Prompts For Open-Ended Generative
Experiment

1. What am I supposed to do <intention>? I
will. . .

2. <intention>, what will I do? I will. . .

3. What should I do <intention>? I will. . .

4. What action will I perform <intention>? I
will. . .

For this open-ended generative experiment, it is
important to note that the optimal prompt may vary
for each model. For instance, the prompt "What am
I supposed to do + [intention]+? " can yield results
for BLIP2 but did not work well for the MAPL and
FROMAGe models. For the MAPL model, "Ques-
tion:... Answer:", and for the FROMAGe model,
"Q:... \nA: " are the template prompts provided by
the model developer. Additionally, adding "I will"
at the end of the prompt is proved to be effective
for both models. After a careful manual inspection
of several prompts and their outputs, we focused
on the 4 most promising ones as in this appendix.

Actions generated using these prompts also need
to be further processed to ensure they conform to

the same format as the target action and other op-
tional actions. For example, IDEFICS consistently
generates sentences prefixed with "Assistant:". To
calculate the similarity score of these answers with
other actions, it is necessary to remove the "Assis-
tant:" prefix and retain only the main action, which
typically begins with a verb.

D Error Analysis

We performed an error analysis aiming to compare
the outputs of the three versions of BLIP2: multi-
modal, language-only, and vision-only. By doing
so, we aimed to gain insights into how, and when,
BLIP2 effectively leveraged information from lan-
guage and vision to achieve better performance in
the task. We observed that, in 1,350 cases (33%),
all three model versions provided a true prediction.
In such cases, the model could make a correct as-
sessment by relying only on one single modality,
which suggests that, in these cases, the information
conveyed by the multimodal input may be redun-
dant.

In 221 cases (around 5%), only the multimodal
BLIP2 could correctly predict the right answer,
while no unimodal model versions could. In these
cases, BLIP2 genuinely leveraged complementary
information from the two modalities, which was
necessary but not sufficient on their own to perform
the task.

The entire test dataset, comprising 4,081 sam-
ples, was categorized into eight different groups
based on the consensus of model predictions under
three conditions. The categories are as follows:

• TTT: The model correctly produces the an-
swer in LV, L, and V.

• TTF: The model correctly produces the an-
swer in LV, L, but not in V.

• ...and so on for the remaining categories.

For each category, a manual inspection of 100
cases was conducted to identify the sources of er-
rors in the models. The results of this analysis are
summarized in Table 6.

This error analysis table reveals a wealth of in-
formation. The second and third rows of the table
indicate that when there is correct information in
one modality, the multimodal model knows how
to utilize it effectively. Furthermore, the examples
in the fourth row demonstrate that these cases can
only be predicted correctly using complementary
information.
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Is the prediction
correct? Number of Cases Percentage Comments

BLIP_LV: T
BLIP_V: T
BLIP_L: T

1350 0.3308

No errors were found in these
cases, indicating that they may
be too easy for the multimodality
model to handle.

BLIP_LV: T
BLIP_V: T
BLIP_L: F

581 0.1424
The model in the L setting gave
incorrect predictions due to the
absence of image information.

BLIP_LV: T
BLIP_V: F
BLIP_L: T

808 0.1980
The model in the V setting gave
incorrect predictions due to the
absence of intention information.

BLIP_LV: T
BLIP_V: F
BLIP_L: F

222 0.0544
Only multimodality setting can
give true predictions.

BLIP_LV: F
BLIP_V: T
BLIP_L: T

11 0.0027
The model’s incorrect predictions
can be attributed to the following
reasons:
1. Problematic/borderline cases;
2. Wrong object detection;
3. Failure to understand the
intention;
4.Only considering one modality;

BLIP_LV: F
BLIP_V: T
BLIP_L: F

221 0.0542

BLIP_LV: F
BLIP_V: F
BLIP_L: T

117 0.0287

BLIP_LV: F
BLIP_V: F
BLIP_L: F

771 0.1889

Table 6: Error Analysis Table: Each row provides information on some specific cases, indicating whether the BLIP2
model can produce a correct prediction under three different conditions and the potential reasons for such results.

E Exploring Different Metrics for
Similarity Measurement

We tested different metrics to conduct the
Reference-based evaluation for the open-ended gen-
erative experiment. We tested in three settings:
multimodal, language-only, and vision-only. The
result are reported in Table 7.

F Degree of Visual Grounding

In our previous analysis, we evaluated the BLIP2
model’s performance in the BD2BB task by exam-
ining the accuracy of the generated actions. How-
ever, accuracy alone does not fully capture the
model’s ability to utilize the information from two
modalities. Therefore, we can also evaluate the
model from a different perspective by considering
its ability to incorporate information only from the
image. We assumed that if the model successfully
utilizes the image information, it will explicitly
mention objects from the image in the generated
actions. This indicates that the action is grounded
in the visual content.

Thanks to the labeling of golden nouns in the

image data, we can easily determine whether the
generated action mentions any objects from the
image. Based on how many actions are grounded in
the visual content, we can calculate the grounding
rate by following the formula:

grounding_rate =
Ngrounded

Ntotal
(1)

We calculated the grounding rate for generated
actions using 15 manually selected prompts. These
prompts were carefully crafted to vary in their fo-
cus: some directed the model’s attention toward
language aspects, others toward visual elements,
and some involved variations in linguistic forms.
The prompts we use are shown in Table 8. The
grounding rate varied across different prompts. In-
terestingly, we found that by changing the prompt,
we could easily influence the grounding rate while
accuracy remain stable. Although we cannot sup-
press a modality by altering the prompt (prompt 6),
we can effectively focus selectively on one modal-
ity by being explicit (prompts 7, 8, 9, and 14).
Figure 5 is the bar plot about both accuracy and
grounding rate. The pink bar represents the accu-
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Setting BERTScore BLEU-4 CIDER METEOR ROUGE
LV 0.53 0.54 0.52 0.48 0.51
L 0.39 0.49 0.38 0.29 0.36
V 0.42 0.37 0.41 0.38 0.4

Table 7: Results for BLIP2 in three different settings using different metrics.

prompt2
prompt4

prompt1
prompt6

prompt3
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prompt14
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Accuracy vs Grounding rate for each prompt
Accuracy
Grounded rate

Figure 5: A bar plot illustrates the accuracy and ground-
ing rate across different prompts. Accuracy increases
from left to right. The bar with the highest grounding
rate corresponds to Prompt 8: "Suppose I am in this
specific visual context. What actions should I take [in-
tention]? Please mention at least one object from the
image." The bar with the lowest grounding rate corre-
sponds to Prompt 2: "Q: What am I supposed to do
[intention]? A:" This variation highlights the impact of
prompt design on model performance.

racy of different prompts in an ascending order. It
is shown that the grounding rate does not always
align with the accuracy.

By introducing the grounding rate as an evalua-
tion metric, we provide an additional perspective
to assess the performance of multimodal models.
It highlights the model’s ability to ground its gener-
ated actions in visual information, offering insights
beyond accuracy alone (Surikuchi et al., 2023).
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Prompt Accuracy Grounding rate
prompt1 Question: What am I supposed to do + [intention]? Answer: 52.66 53.10
prompt2 Q: What am I supposed to do + [intention]? \nA: 52.34 51.58
prompt3 What am I supposed to do + [intention]? 53.20 58.25
prompt4 What am I supposed to do + [intention]+? I will 52.63 63.44
prompt5 What am I supposed to do + [intention]+? Answer in the format ”I will” 54.57 55.67
prompt6 What am I supposed to do + [intention]+? Please provide an answer based

solely on the intention, without considering the image.
53.08 56.82

prompt7 What action should I take +[intention]+? Please base your response solely
on the image. Additionally, kindly mention at least one object visible in
the image.

53.32 75.97

prompt8 Suppose I am in this specific visual context. What actions should I take+
[intention]+? Please mention at least one object from the image.

54.76 76.06

prompt9 Imagine I am in the given visual scenario. What actions should I take regarding
+[intention]+’? Please mention at least one object from the image.

54.06 75.74

prompt10 Imagine yourself in this specific visual context. Considering both the
intention and the image, what actions should be taken +[intention]+?

54.06 67.78

prompt11 Considering both the intention and the image, what will you do +[intention]+? 55.16 68.41
prompt12 What will I do +[intention]+? 54.47 61.67
prompt13 What will you do +[intention]+? I will 54.37 62.23
prompt14 What will you do +[intention]+? Please give a plausible reason by mentioning

at least one object from the image.
53.96 75.89

Table 8: The accuracy and grounding rate across different variations of the prompts.


