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Abstract

This study introduces a novel framework for
evaluating Large Language Models (LLMs)
and Vision-Language Models (VLMs) in Per-
sian, a low-resource language. We develop
comprehensive datasets to assess reasoning,
linguistic understanding, and multimodal ca-
pabilities. Our datasets include Persian-OCR-
QA for optical character recognition, Persian-
VQA for visual question answering, Persian
world-image puzzle for multimodal integration,
Visual-Abstraction-Reasoning for abstract rea-
soning, and Iran-places for visual knowledge
of Iranian figures and locations. We evaluate
models like GPT-4o, Claude 3.5 Sonnet, and
Llama 3.2 90B Vision, revealing their strengths
and weaknesses in processing Persian. This
research contributes to inclusive language pro-
cessing by addressing the unique challenges of
low-resource language evaluation. Addition-
ally, we release samples of our dataset to sup-
port further research in Persian multi-modal
tasks1.

1 Introduction

Large Language Models (LLMs) have undergone
rapid advancements in recent years, particularly in
multimodal frameworks (Zhang et al., 2024; Wu
et al., 2023) that integrate and process diverse data
types such as text, audio, and images. These break-
throughs have expanded the applications of LLMs
across various domains, from conversational AI to
content generation (He et al., 2024) and knowledge
retrieval (Long et al., 2024). Multimodal LLMs
demonstrate remarkable capabilities in aligning
and interpreting visual-textual information (Ataal-
lah et al., 2024), making them powerful tools for
tasks that span different modalities (Nguyen et al.,

1https://huggingface.co/AUT-NLP

2023). However, as the capabilities of LLMs grow,
so does the need for rigorous evaluation methods to
measure their effectiveness and ensure their outputs
align with the intended goals (Huang and Zhang,
2024). Evaluating LLMs became a crucial area
of research, especially when considering other lan-
guages rather than high-resource ones, where re-
sources are abundant (Chang et al., 2023).

Although Persian is the native or second lan-
guage for around 130 million people, high-quality
datasets and benchmarks for the language remain
limited (Agic et al., 2016). While researchers have
introduced foundational datasets for pretraining
LLMs (Sabouri et al., 2022; Salmasi and Kabir,
2023; Farsi et al., 2024), these resources are of-
ten single-modality. Evaluating LLM capabilities,
such as reasoning, verbal intelligence, and mul-
timodal reasoning, remains underexplored. Mul-
timodal frameworks compound this challenge by
requiring datasets that effectively pair text with
complementary modalities, such as images, videos,
while maintaining linguistic nuances (Hedderich
et al., 2020).

In this study, we address these challenges by
creating a comprehensive dataset designed explic-
itly for the Persian language. These datasets are
constructed from scratch and designed to evaluate
LLMs on multiple dimensions, including reasoning
and verbal intelligence similar to prior works (Fu
et al., 2024). Furthermore, we assess a set of large
language models’ performance with our frame-
work, which measures the relative difficulty of dif-
ferent datasets and ensures a uniform evaluation
across tasks (Li et al., 2023b). By investigating the
reasoning capabilities of LLMs and their ability to
interact with Persian linguistic constructs and mul-
timodal data, we aim to uncover the extent of their
knowledge base and adaptability to low-resource

https://huggingface.co/AUT-NLP
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languages. To tackle these challenges, this study
proposes a multimodal evaluation framework fo-
cusing on creating datasets tailored to the Persian
language and evaluating the capabilities of LLMs
and Vision-Language Models (VLMs) in process-
ing Persian. The framework assesses models across
key dimensions, including reasoning abilities and
visual-textual comprehension, while considering
the difficulty of the datasets (Zhu et al., 2023). This
work aims to evaluate the performance of current
LLMs in multimodal contexts, providing a compre-
hensive assessment of their capabilities in Persian.
This research fills critical gaps in low-resource lan-
guage evaluation while contributing to developing
inclusive, adaptable, and effective language pro-
cessing models for diverse applications.

2 Related Work

The work related to our study can be divided into
three main areas, discussed in the following sec-
tions. Together, these areas offer a foundational
understanding of the challenges and opportunities
in developing and evaluating models in multimodal
and low-resource language settings.

Benchmarking LLMs and Dataset Develop-
ment for Low-Resource Languages. Multi-
modal evaluation frameworks are critical for as-
sessing models integrating and processing diverse
data modalities. MME introduces a comprehen-
sive benchmark for multimodal language models
(MLLMs), evaluating perception and cognition
abilities across 14 subtasks, enabling comparisons
among advanced MLLMs (Fu et al., 2024). Sim-
ilarly, SEED-Bench-2 categorizes MLLM capa-
bilities hierarchically, incorporating tasks like im-
age generation and providing detailed insights into
model strengths and weaknesses (Li et al., 2023a).

However, developing benchmarks and datasets
for low-resource languages like Persian is challeng-
ing due to limited resources and linguistic diver-
sity (Sabouri et al., 2022). Multilingual bench-
marks, such as IGLUE (Bugliarello et al., 2022),
support zero-shot and few-shot learning across 20
languages, highlighting the potential of multilin-
gual datasets but often lacking specific resources
for Persian. While comprehensive benchmarks like
GAOKAO (Zhang et al., 2023a) showcase LLMs’
strengths in objective tasks, they also expose limi-
tations in domain-specific challenges. For Persian,
benchmarking efforts remained scarce, underlining
the need for evaluation frameworks that reflect its

unique linguistic and cultural features.
Benchmarks and Visual Reasoning for Vision-

Language Models. Vision-Language Models
(VLMs) are evaluated using benchmarks designed
to test their ability to handle both visual and textual
inputs (Xu et al., 2024). Benchmarks like VisIT-
Bench focus on tasks such as accessibility assess-
ments and image-caption generation (Bitton et al.,
2023), while GEM evaluates multilingual vision-
language tasks, including image and video inter-
actions (Su et al., 2021). Visual reasoning bench-
marks like GRASP test language grounding and in-
tuitive physics understanding in video-based tasks
(Jassim et al., 2023), while Multimodal-CoT uses
chain-of-thought prompting to improve structured
reasoning (Zhang et al., 2023b). Together, these
benchmarks comprehensively evaluate VLM capa-
bilities across diverse tasks. For dataset creation,
we studied these works to establish best practices.

3 Datasets

We focused on investigating the evaluation of the
multimodality attribute in Large Language Models
(LLMs). Multimodal datasets contain data from
multiple modalities, such as text, images, audio,
video, or other structured/unstructured data types.
For this study, we prioritized text-image data, en-
abling in-depth exploration of the model’s ability
to process and reason across these two modalities.

To create a comprehensive benchmark for VLMs
in the Persian language, particularly focusing on
multimodal varieties, we emphasized several key
aspects like their reasoning skills, creativity, famil-
iarity with linguistics in images, and knowledge
about places in Iran. Our dataset has five distinct
sets that we describe in the following paragraphs.

Persian-VQA: To create a VQA (Visual Ques-
tion Answering) dataset in Persian, we used the
Zhang et al. (2016) dataset, which is one of the
most popular VQA datasets in English. This
dataset contains 7,764 yes/no questions derived
from 1,023 images. We translated the entire dataset
into Persian using the GPT-4o model. To ensure the
quality of the translated questions, we conducted a
manual review of the generated dataset. An exam-
ple of a record of this dataset is shown in Figure 1.

Persian-OCR-QA: Nowadays, OCR (Optical
Character Recognition) has become one of the
most important tasks due to its numerous appli-
cations (Peng et al., 2013; Singh et al., 2012). To
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Figure 1: An example of Persian-VQA. Persian
question-answer pair and its original English version.

evaluate the performance of current models on this
task, we introduced new datasets to measure the
performance of LLMs on OCR tasks in the Persian
language. We used the Persian-OCR dataset, which
contains 7,000 pages. Using GPT-4o-mini to make
a question from the text and answer, we extracted
ten question-answer pairs from each page, resulting
in a comprehensive dataset of 70,000 entries.

Persian-VAR: To evaluate Vision Language
Models (VLMs) in the domain of abstract reason-
ing, we introduce a novel dataset, Persian-VAR
(Persian Visual-Abstraction-Reasoning), compris-
ing 120 samples, inspired by Raven’s Progressive
Matrices (Carpenter et al., 1990). This non-verbal
test is typically used to assess general human intel-
ligence and abstract reasoning, and it serves as a
non-verbal estimate of fluid intelligence. It is one
of the most commonly administered tests to groups
and individuals, from young children to the elderly.
To create this dataset, we collected entrance ex-
ams for gifted middle and high schools in Iran, as
illustrated in figure 2, providing a rich source of
complex visual-abstraction-reasoning challenges
that align with the cognitive capabilities assessed
by Raven’s matrices.

Figure 2: An Example of Persian-VAR. Persian
question-answer pair and its original English version.

Persian-WIP: The Persian Word-Image Puzzle
dataset assessed multimodal models’ ability to in-
tegrate and process visual and textual information.
By challenging models to combine visual cues with
linguistic interpretation, this dataset evaluates their
capability to manage complex inputs. Such tasks

demand creative thinking and language skills, mak-
ing it a robust framework for testing image recog-
nition and language comprehension skills. This
serves as both an educational tool and a bench-
mark for evaluating the effectiveness of multimodal
systems. The dataset was compiled using crowd-
sourcing, crawling social apps like Telegram and
Instagram, and generating images with AI mod-
els like Midjourney. Figure 3 displays a sample
instance from the dataset.

Figure 3: An Example of Persian-WIP. Taas-Kebab, a
traditional Persian dish. The name combines "Taas"
(dice) and "kebab" (grilled dish), referring to a dish
made with diced kebab. When an image shows diced
kebab, it represents Taas-Kebab in Persian.

Iran-Places: This dataset is designed to evalu-
ate models on their knowledge of notable places
in Iran, akin to the Persian version of (Weyand
et al., 2020). It consists of over 500 images, with
each province in Iran represented by at least seven
images. This comprehensive coverage ensures a
diverse representation of the country’s geographi-
cal and cultural landmarks. An example of this is
illustrated in Figure 4.

Figure 4: An Example of Iran-Places: Persian question-
answer pair and its original English version.

4 Experiments

We tested current LLMs, such as ChatGPT-4o,
Claude 3.5, and Llama 3.2, performance on the pro-
posed benchmark. GPT-4o demonstrated superior
performance in tasks requiring advanced reasoning
and visual comprehension in Persian, indicating
higher overall scores in cognitive tasks (Table 1).
Claude 3.5 Sonnet excelled in text-based tasks like



55

Task Metric GPT-4oa Claude 3.5 Sonnetb Llama 3.2 90B Vision
P-VAR Accuracy (%) 16.22 11.71 13.51

Persian-OCR-QA
BLEU-1 (%) 52.61 57.53 23.09
ROUGE-Lc(%) 63.41 77.47 44.96

Persian-VQA
Accuracy (%) 89.17 85.86 82.89
F1 Score (%) 91.54 87.82 86.78

Iran-Places Relaxed Exact matchd(%) 16.44 17.07 16.43
a The GPT-4o-2024-09-03 version is used in this benchmark.
b The Claude-3.5-Sonnet-2024-10-22 version is used in this benchmark.
c We used the F1 score for ROUGE-L.
d We awarded 0.5 points if the name of the province or place was predicted correctly, 1 point if both were

correct, and 0 points otherwise.

Table 1: Top 3 VLMs Performance on Different Multimodal Persian Tasks

OCR and text generation, suggesting strong tex-
tual processing capabilities. Llama 3.2 90B Vision
showed balanced performance but with lower over-
all scores than the others.

All models struggled significantly with multi-
modal integration tasks, failing to achieve exact
matches in the Persian Word-Image Puzzle, neg-
atively impacting their overall multimodal scores.
Similarly, low performance on tasks involving spe-
cific Iranian locations revealed limitations in cul-
turally specific visual knowledge, affecting overall
effectiveness in these areas.

These varied results, as detailed in Table 1, high-
light the complexities of evaluating language mod-
els in Persian, showing strengths in specific areas
but deficiencies in multimodal and culturally spe-
cific tasks. This underscores the need for further
research and improved datasets to enhance model
performance across diverse tasks.

5 Future Work

Our findings highlight the need for more special-
ized datasets for low-resource languages to im-
prove model evaluation and performance. Future
research should focus on developing new evalu-
ation metrics, expanding multimodal datasets to
include additional modalities like video and audio,
and advancing model capabilities in handling com-
plex multimodal tasks for the Persian language.

6 Conclusion

In this study, we introduced a framework for
evaluating Large Language Models (LLMs) and
Vision-Language Models (VLMs) in Persian, fo-
cusing on five specialized datasets: Persian-OCR-
QA, Persian-VQA, Persian Word-Image Puzzle (P-

WIP), Persian Visual-Abstraction-Reasoning (P-
VAR), and Iran-Places. Our evaluations of GPT-
4o, Claude 3.5 Sonnet, and Llama 3.2 90B Vision
provided significant insights. GPT-4o excelled in
abstract reasoning and visual question answering,
highlighting its strong visual-linguistic integration
capability. Claude 3.5 Sonnet showed superior
performance in Persian-specific OCR tasks. Al-
though all models performed similarly in geograph-
ical knowledge, they struggled with the Persian
Word-Image Puzzle, revealing challenges in tasks
needing creative multimodal synthesis.
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