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Messages from the Organizers

Multimodal generation techniques have heralded new possibilities in creative content generation. Yet,
the evaluation of such multimodal outputs remains a largely uncharted area, with fundamental questions
still unresolved. These include understanding the contributions of individual modalities, the utility of
pre-trained large language models in multimodal contexts, and the metrics for assessing faithfulness and
fairness in generated outputs.

The first EvalMG workshop seeks to address these gaps by convening leading minds from natural
language processing, computer vision, and multimodal AI. Our objective is to spearhead the development
of robust evaluation methodologies that will propel further research in multimodal generation.

We received 21 submissions for this workshop, out of which 7 were accepted, including 5 long papers and
2 short papers. We have invited 11 reviewers and each submission was rigorously reviewed by at least
three reviewers. The meta-reviews and final decisions were collaboratively handled by the organizing
team.

We extend our deepest gratitude to all contributors—authors, reviewers, and particularly The University
of Adelaide, for their generous support of this workshop. Your collective efforts are instrumental in
shaping the future of multimodal research.
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Abstract

This work aims to develop an understanding of
the rapidly emerging field of VideoQA, partic-
ularly in the context of instructional program-
ming videos. It also encourages the design-
ing of a system that can produce visual an-
swers to programming-based natural language
questions. We introduce two datasets: Code-
VidQA, with 2,104 question-answer pair with
timestamps and links taken from programming
videos extracted using Stack Overflow for Pro-
gramming Visual Answer Localization task,
and CodeVidCL with 4,291 videos (1751 pro-
gramming, 2540 non-programming) for Pro-
gramming Video Classification task. In ad-
dition, we proposed a framework that adapts
BigBird and SVM for video classification tech-
niques. The proposed approach achieves a sig-
nificantly high accuracy of 99.61% for video
classification.

1 Introduction

One of the most interesting trends on the internet is
the availability of information in the form of videos.
Similarly, instructional videos have become the
usual way of teaching and learning how to solve cer-
tain problems. Programming-based instructional
videos have emerged and effectively convey tar-
geted information via instructional demonstrations
and voice-overs. 80% of all of those videos are in
English, 2% are in Spanish and 4% are in German
(Kadriu et al., 2020).

Hence, the practice of self-learning has become
more convenient, especially with the availability
of massive open online courses (MOOCs) (Hill,
2014). Approximately 19% to 20% of a devel-
oper’s time is dedicated to using the internet for
purposes of searching information for development
and programming. Although more programming
tutorials are being produced and used, developers
are sometimes hard-pressed to find good videos
that give as much coverage to actual use cases as

they do to the theory behind them. For example,
developers looking for specific questions may scan
through many videos to find one that they want.
Moreover, during tutorial sessions, language bar-
riers may impede the learner’s comprehension of
the subject, especially among those whose second
language is English (Brandt et al., 2009).

Despite being widely believed as popular, Video
Question Answering does not escape from inher-
ently challenging hurdles. To answer questions,
VideoQA models need adequate knowledge of the
visual content so they can recognize visual ob-
jects and understand their semantic, spatial, tempo-
ral, and causal relations (Khurana and Deshpande,
2021). However, information on their effective-
ness remains limited, often certainly, because of
the absence of proper frameworks and datasets for
evaluation. Uncovering the causes behind failure
in VideoQA is a tough nut to crack, either posed
by the dataset or the trained model (Khurana and
Deshpande, 2021).

The contributions of this work are the new
CodeVidQA dataset which contains 2,104 compre-
hensively annotated timestamped question-answer
pairs curated from videos extracted from Stack
Overflow and a new dataset, CodeVidCL consists
of 4,291 programming and other related videos.
We also suggest that the employment of BigBird
and SVM models in the structure of the ensemble
would increase the efficiency of VideoQA and the
classification of programming videos.

The CodeVidQA dataset facilitates advance-
ments in VideoQA systems by offering times-
tamped question-answers pairs for precise video-
based educational content retrieval. Similarly, the
CodeVidCL dataset supports the classification and
analysis of programming tutorial videos, enhancing
AI-driven educational applications. Both datasets
are publicly available on GitHub, promoting acces-

1



sibility and further research in the domain1.

2 Literature survey

2.1 Existing Datasets for VideoQA

One of the first novel datasets used for VideoQA
is the YouTube2Text(Guadarrama et al., 2013)
dataset, including 1,987 videos and 122,708 natu-
ral language descriptions. Other similar datasets
include Movie QA (Lei et al., 2019), VideoQA
(Mun et al., 2017), and TVQA+ (Kim et al., 2017)
covering different types of videos.

Further, MarioQA (Calzolari et al., 2020) is
based on a game, Pororo-QA (Gupta et al., 2023)
is based on cartoon and life scenarios like LifeQA
(Lei et al., 2018) and MedVidQA (Hamon et al.,
2017).

2.2 Video Question Answering in Natural Lan-
guage Processing

VideoQA is an extended problem in Natural Lan-
guage Processing NLP in which question answer-
ing is performed through the contents of the video
sequence. It is also divided into multi-choice QA,
where models choose from the options available
choices, and open-ended QA which involves gen-
eration, regression, or classification (Choi et al.,
2021).

The main problem of VQA is manifested in
the need to accurately identify the correct answers
based on the comprehension of the context of the
video. For example, the proposed models process
keyframes by using attention mechanisms, or ap-
ply knowledge-guided methods for further complex
queries. In particular, a Siamese Sampling and Rea-
soning (SiaSamRea) has been proven to achieve
initial success across multiple benchmarks, improv-
ing the performance on MSRVTT-QA(Xu et al.,
2017), MSVD-QA(Xu et al., 2017) and Activity
Net-QA(Yu et al., 2019) datasets(Yu et al., 2024).

2.3 Need for Programming-based Instruc-
tional Video QA Dataset

Simply predicting natural language answers to
most of the questions don’t reflect real-world inter-
action as people want to follow visuals step by step
along with textual answers. Therefore, recent devel-
opments in video question-answering systems on
specific domains like medicine, movies and games,
etc. there is need to design systems that are related
to programming. Although there are datasets for

1https://github.com/sanajavaid01/codevid-datasets

entertainment, such as MovieQA (Lei et al., 2019),
or TVQA (Tapaswi et al., 2016), there is a lack of
datasets specifically on programming instruction.

2.4 Need for Programming-Based Instruc-
tional Video Classification Dataset

A large amount of programming instructional
videos are used in the learning process to develop
programming skills, but there is a lack of efficient
methods for classifying them that need domain-
specific datasets for the Programming Video Clas-
sification task. This paper establishes that there
are several methods of classifying videos through
the use of video transcripts and contextual features.
Specifically, Kinetics (Lopez et al., 2007) which is
related to human actions and COIN (Gupta et al.,
2023) which consists of 11,827 instructional videos
collect from 12 domains.

3 Material and Methods

3.1 CodeVidQA Creation

The selection of several videos is required to con-
struct a high-quality programming instructional
VideoQA dataset from several general program-
ming languages and databases such as Java, Python,
JavaScript, MySQL, Oracle, and MongoDB, can
be selected.

Real-life questions, such as, “How can I use
queues in Laravel?” Counterarguments to the above
arguments can only be effected by practical imple-
mentation, as theoretical answers to the problems
can hardly be comprehended. The dataset creation
process is initiated by systematically pulling ques-
tions from the Stack Overflow website, where spe-
cific questions related to programming and non-
programming instructional were identified. After
that annotation was performed on programming
instructional videos extracted from YouTube that
results in the generation of question brackets to-
gether with timestamped answers by two program-
ming experts.

Both programming experts have more than two
years of experience in developing programs and
possess proficient knowledge of more than one
programming language. For annotation purposes,
programming instructional questions were divided
equally between both experts for the formulation
of the resulting dataset. The following schematic
outlines the key steps involved in the methodology
for the CodeVidQA dataset. Each component illus-
trates the processes and relationships integral to the
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Figure 1: Schematic Overview of the Methodology for CodeVidQA Dataset

model development.
Step 1: Crawling Stack Overflow for program-

ming questions.
Step 2: Filtering programming instructional and

non-programming videos.
Step 3: Querying YouTube for relevant videos.
Step 4: Annotation Process: The expert formu-

lates the question and marks the answer timestamps
in the video.

Figure 1 shows the steps of workflow for creation
of CodeVidQA Dataset.

3.1.1 Extracting Stack overflow questions

Dataset generation begins with the collection of
programming-related questions from community
question-answering (CQA) platforms such as Stack
Overflow. As one of the largest CQA sites, Stack
Overflow comprises millions of questions posted
by developers.

We collected about 2,500 high-voted ques-
tions in different programming languages such
as HTML, JavaScript, and Python using the
Stack Overflow v2.3 API2 without limiting by
tags.Figure 2 shows the tag cloud of the tags against
questions extracted from tack Overflow API. Most
frequently occurring tags are JavaScript and Python
which are shown in larger font depicting the large
number of questions belong a specific language.
These extracted questions act as topics for search-
ing instructional videos.

2https://api.stackexchange.com/2.3/questions

Figure 2: Tag Cloud of frequently used tags against
Stack Overflow questions

3.1.2 Identification of relevant
programming-related questions

High-voted questions were collected from Stack
Overflow using the API and then identified as either
programming instructional or non-programming in-
structional. Questions like “Daylight saving time
and time zone best practices” or “What is the dif-
ference between POST and PUT in HTTP?” are
considered as non-instructional because they can
be demonstrated through theory without any im-
plementation. The task of categorization of the
questions was done manually by the programming
experts and they divided them into 1,946 ‘program-
ming instructional’ and 553 ‘non-programming in-
structional’. Figure 3 illustrates the distribution,
questions with tags JavaScript and Python account-
ing for 16.9% and 14.3%, and the questions with
tags Java and Git making up a part of 11% each.
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Figure 3: Distribution of the instructional programming questions category collected from Stack overflow

3.1.3 Searching YouTube Videos Relevant to
Each Programming Instructional
Question

The next important process in dataset construction
is the process of collecting corresponding YouTube
videos associated with a particular Stack Overflow
question or topic. The following criteria were used
for selecting videos:

i. There have to be at least a thousand sub-
scribers of a channel from which the video
will be selected.

ii. Videos should be in English since the majority
of tutorials are in English (80%) then German
(4%) and Spanish (2%) (Kadriu et al., 2020).

iii. Subtitles should be on and are in the English
language.

iv. If a video does not contain a verbal explana-
tion it is considered non-instructional.

v. The Integrated Development Environ-
ment(IDE) has to be used for the implementa-
tion should be observable.

For each question or topic, a YouTube search
option is performed with the most relevant high-
quality video. Selection is made on CONTENT
only, PRESENTER’s way of teaching and AN-
SWERS provided are all from the first page results.

3.1.4 Expert Annotation for Programming
Instructional Videos

Programming experts need to identify videos as ei-
ther “programming instructional” or “programming
non-instructional” based on a YouTube search.
This important step is necessary because:

• Retrieve videos from the search may con-
tain theoretical communication rather than
programming against a specific programming
query.

• It is essential to ensure the reliability of pro-
gramming videos as instructional.

To identify a programming video as instructional
from the pool of YouTube videos, the following
criteria should be met:

i) Programming instructional videos should
demonstrate the implementation of a specific
problem that is queried using YouTube search,
yielding decent results for the problem.

ii) Programmers should clearly define each step
of the implementation using an Integrated De-
velopment Environment (IDE) and provide
reasoning for each step.

Programming instructional videos can be of any
level of expertise. Most programmers begin the
video with an introduction and end with conclud-
ing notes. Skip these sections while annotating
videos. Only the segment of the video where the
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programmer provides proper steps for implementa-
tion considers the answer.

3.1.5 Formulating Instructional Questions
and Visual Answers from Videos

After defining what programming instructional
videos are, the following steps were followed to
generate programming-related questions and mark
their answers. A programming expert marked the
starting and ending timestamps of the answer and
formulated the question for annotated timestamps
along with the identification of the programming
language.Of course, the majority of questions were
about implementation, But basic notes or explana-
tions also apply to the videos, for instance, “How
do I align an element to the center in the horizontal
direction?”

For the majority of the cases, some questions
were either different or were of the same times-
tamps whereby some of the tutorials provide
around 15 questions. This approach serves to make
questions diverse to accommodate how developers
approach a problem only to find the same resulting
answers or solutions.

3.1.6 Creating dataset having a question and
respective answers

After formulating questions against timestamps,
the programming expert has to add the video Id,
question, starting timestamp, and ending timestamp
along with the programming language of the video
in an excel sheet. This resulted in the creation of
2,104 pairs of question and answers timestamps.
The programming language feature will help the
video question-answering system to search videos
against a specific language if the user mentions that
language in its query.

3.2 CodeVidCL Creation

A programming-based video (QA) system that aids
visual answers to programming-related questions
must be able to distinguish between “programming”
and “non-programming” videos. For building these
types of systems that can perform effectively on
datasets CodeVidCL needs to be created that can
train the system to differentiate between program-
ming and non-programming videos.

In the first step, a video classifier will be trained
that can be utilized to get a high-confidence video
category. In the second step, programming experts
validated the programming and non-programming

video categories predicted by the classifier and then
sampled those videos for the CodeVidCL dataset.

The following steps should be performed to
achieve the proposed solution for the creation of
CodeVidCL. Figure 4 shows the steps of workflow
follow for the creation of CodeVidCL Dataset.

Step 1: Collecting programming and non-
programming videos.

Step 2: Extracting subtitles of videos.
Step 3: Build an ensemble classifier based on

Big Bird transformers.
Step 4: Get the high confidence of the video

category.
Step 5: Validate predicted video categories and

add them to the dataset.

3.2.1 Collecting programming and
non-programming videos

To train the classifier, we need to collect program-
ming and non-programming videos for the train-
ing dataset that can be input for fine-tuning in the
classifier. We utilized 2,104 human-annotated pro-
gramming videos from the CodeVidQA dataset and
for non-programming videos, we sampled 3,795
videos from HowTo100M (Jang et al., 2017), which
is a large-scale YouTube dataset based on instruc-
tional videos from various categories like food,
art, craft, sports, cars and vehicles etc. There
are total of 143 categories in HowTo100M data
having 12,38,912 entries. Figure 5 shows num-
ber of entries against the top 20 categories. To
remove the imbalance between programming and
non-programming videos, the HowTo100M dataset
was reduced to get the equally distributed entries
against each category that resulted in 27 entries for
each category except Diwali(26 entries), School
Stuff(22 entries), Social Activism(15 entries)and
National Days(6 entries) categories.

3.2.2 Extracting subtitles for all video
A total of 6,104 collected videos in previous are
taken and pass to YouTube API to get subtitles. We
use the YouTube-transcript-API3 module of Python
to get subtitles of video along with many words.

Most of the videos have to disable transcripts or
use a language other than English for transcribing.
This type of video is eliminated from the dataset
based on the number of words. After doing all the
data cleaning, add one more column in the Python
dataframe with name category (programming, non-
programming) and class (1, 0).Using a stratified

3https://pypi.org/project/youtube-transcript-api/
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Figure 4: Diagrammatic Representation of the Methodology for CodeVidCL Dataset

Table 1: Performance metrics for different models

Models Accuracy Precision Recall F1 Score
BigBird (bigbird-roberta-large) 99.61% 99.05 99.01 99.50

SVM 99.80% 99.81 99.81 99.81

Figure 5: Number of Entries against top 20 Categories
of HowTo100M

splitting, we utilized 20 % for testing, and 80 % of
the videos in the collection for training purposes.

3.2.3 Building Video Classifier
In the next step, a classifier is trained on training
dataset videos that are created in the previous step.
The subtitles are first extracted here because they
can be longer than 2000-3000 words. A classi-

fier based on a transformer, the BigBird(Zaheer
et al., 2020) model by Hugging Face 4 and SVM
are trained. SVM was used as a statistical clas-
sifier that is effective for categorization tasks, es-
pecially when the data is structured and separable
into distinct categories, which fits well for coarse-
grained categorization.BigBird was chosen as a
deep learning classifier due to its capability to han-
dle long-range dependencies and accommodate
long sequences like subtitles from videos. Big-
Bird is suitable for capturing context from the se-
quential nature of subtitles, which is common in
videos. The models above were combined in the
ensemble classifier, and majority voting is apply
in making the final forecasts. The subtitles were
extremely lengthy and hence, it was crucial to work
with large-grained categories such as programming
and non-programming.

BigBird is designed for sequence processing and
training on PyTorch. To combat class imbalance,
class weights were modified, early stopping was

4https://huggingface.co/google/bigbird-roberta-large
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used and a variable learning rate was implemented.
Training settings were warm-up scheduler with 5
steps, weight decay of 0.0001, gradient accumula-
tion with 4 steps and mixed precision activated by
fp16. This model was trained for one epoch with a
batch size of four and was evaluated every 20 steps.

Labels in the SVM were represented numerically,
and the TF-IDF was used as features and balanced
class to address the issue of imbalance. Predictive
probabilities of the class distribution were com-
puted and the final Classifier uses votes between
BigBird and SVM predictions for accurate classifi-
cation. This approach enhances the performance of
these models making them a hybrid. Table 1, shows
the accuracies of fine-tuned BigBird and SVM.

3.2.4 Identification of relevant video
We selected a subset of YouTube8M’s(Abu-
El-Haija et al., 2016) computer-related, non-
programming videos as well as other Kaggle
datasets that have been expertly categorized by pro-
grammers.

We built a subset from YouTube8M and differ-
ent Kaggle datasets, such as YouTube data science5

and YouTube programming videos from free code
camp6, TED-ED7, and caption datasets8, after train-
ing our ensemble model. 5,722 videos were pro-
duced overall from this procedure, of which 3,120
were classified as programming and 2,602 as non-
programming.

3.2.5 Predicting Relevant Video Category
Using Video Classifier

In this step, we utilized an ensemble setting for
predicting videos with a high confidence vote on
the category for the dataset gathered in the previ-
ous step. The ensemble classifier predicted 1,751
programming videos and 2,540 non-programming
videos. To create a high-quality dataset, program-
ming experts only chose those videos to which the
classifier gives high confidence in the category.

3.2.6 Sampling High-Quality Video
In the last step, videos with a predicted category
and high confidence are validated and chosen by

5https://www.kaggle.com/datasets/sandhyakrishnan02/youtube-
datascience-video-views

6https://www.kaggle.com/datasets/nuhmanpk/all-
programming-tutorial-from-free-code-camp

7https://www.kaggle.com/datasets/hadilhagar/ted-ed-
dataset-acquired-via-youtube-api

8https://www.kaggle.com/datasets/shivendrra/youtube-
caption-dataset-for-finetuning-or-training

programming experts to create a high-quality Code-
VidCL dataset. This dataset contains the video title,
video Id, video category, subtitle, and number of
words in subtitles for each video.

4 Results & Analysis

4.1 CodeVidQA Analysis and Validation

When building CodeVidQA, we aim to compile
reliable programming courses from YouTube only.
This way we can say that a video is reliable if it has
more than a thousand subscribers, from a reliable
programming institute, from a famous programmer
or famous programming platforms like W3Schools,
Treehouse, etc. We collected 2,500 questions about
programming from Stack Overflow, selecting only
those that contain the instructions that can be illus-
trated in an IDE. Such theoretical questions as those
which do not require an answer in instructional sit-
uations were not included. The second phase only
included the instructional questions, therefore, we
have 2,104 paired questions and visual answers ob-
tained from 1, 363 instructional videos, making up
132 hours of video. Figure 7 and Figure 8 show the
answer duration of videos in seconds and the dis-
tribution of question length in CodeVidQA dataset
respectively. For Python alone, more than 400
pairs were produced and this was trailed by both
JavaScript and Flutter. Figure 6 shows the number
of question answers key pairs against programming
language.

Figure 6: Number of videos against each programming
language in CodeVidQA

For evaluation,100 questions are sampled that
7



Figure 7: Answer Duration Distribution of CodeVidQA

Figure 8: Question Length Distribution of CodeVidQA

are extracted from Stackoverflow and two program-
ming experts categorize them as instructional or
non-instructional. After categorizing those both
programmers are in same agreement except for a
few questions upon which theoretical and practi-
cal demonstration can be given. To validate the
dataset, 50 videos are sampled and ask both pro-
gramming experts to annotate answers along with
the formulation of questions. Semantic similarity
of formulated questions were assessed and the ab-
solute differences between answers timestamped
were calculated. The second assessment validates
their agreement on proving the precise and valid
answer timestamps from the videos. We found that
both the annotators formulated 80 and 67 questions,
and 54 out of them were semantically similar. The
CodeVidQA dataset’s quality is confirmed by these
evaluations.

4.2 CodeVidCL Analysis and Validation

To construct the CodeVidCL dataset, we took a se-
lection of human-annotated programming instruc-
tional videos from the CodeVidQA dataset and non-
programming videos from HowTo100M dataset
that is used as the training set for the CodeVidCL

dataset. To generate a validation and test set, we
sampled high-confidence videos that a video classi-
fier had predicted. To further evaluate CodeVidCL
dataset, we asked both the programming experts
to look over the video category that the model had
predicted on a dataset created from YouTube8M
and different Kaggle datasets .

The experts asked to update the category and
label videos as non-relevant if there is insufficient
data to categorize them into any of the categories
in case the video classifier incorrectly classifies
them. The final CodeVidCL collection contains
4291 videos, 2540 of which are non -programming
videos and the remaining ones are programming.

5 Conclusion

One of the most famous and actively developing
methods of obtaining knowledge is the use of on-
line instructional videos, especially in program-
ming. Video Question Answering (VideoQA) is an
essential research domain, that focuses on equip-
ping AI with the ability to interpret and engage with
visual information using natural language. How-
ever, VideoQA is significantly less investigated
than Image-QA, which creates difficulties for mod-
els to understand the content of videos and to an-
swer the queries. To fill these gaps, this research
proposes two datasets, CodeVidQA and CodeV-
idCL for programming instructional video question
answering and classification.

CodeVidQA contains 2,104 entries where each
entry represents an expert-curated programming
question-answers pair along with a video Id. More-
over, up to 99.61% accuracy has been achieved
after the training of the BigBird model and SVM
for the creation of the CodeVidCL dataset. These
results not only prove the applicability of the pro-
posed datasets but also open the research avenue
for the enhancements of future VideoQA systems
regarding the preciseness of response and richness
of the learning experience in programming through
videos.

6 Limitations

The existing dataset covers only a limited set of
programming languages for video classification
and question answering. A larger and more di-
verse dataset, such as CodeVidQA and CodeVidCL,
which spans a broad range of programming topics,
is needed. Additionally, result explainability is a
significant factor, as current models do not identify
the features that contribute to their predictions.

8



References
Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan,
and Sudheendra Vijayanarasimhan. 2016. Youtube-
8m: A large-scale video classification benchmark.
arXiv preprint arXiv:1609.08675.

Joel Brandt, Philip J Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R Klemmer. 2009. Two stud-
ies of opportunistic programming: interleaving web
foraging, learning, and writing code. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589–1598.

Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
Khalid Choukri, Christopher Cieri, Thierry Declerck,
Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, et al. 2020. Proceedings of the twelfth
language resources and evaluation conference. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference.

Seongho Choi, Kyoung-Woon On, Yu-Jung Heo, Ah-
jeong Seo, Youwon Jang, Minsu Lee, and Byoung-
Tak Zhang. 2021. Dramaqa: Character-centered
video story understanding with hierarchical qa. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 1166–1174.

Sergio Guadarrama, Niveda Krishnamoorthy, Girish
Malkarnenkar, Subhashini Venugopalan, Raymond
Mooney, Trevor Darrell, and Kate Saenko. 2013.
Youtube2text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot
recognition. In Proceedings of the 2013 IEEE Inter-
national Conference on Computer Vision, ICCV ’13,
page 2712–2719, USA. IEEE Computer Society.

Deepak Gupta, Kush Attal, and Dina Demner-Fushman.
2023. A dataset for medical instructional video clas-
sification and question answering. Scientific Data,
10(1):158.

Thierry Hamon, Natalia Grabar, and Fleur Mougin.
2017. Querying biomedical linked data with natural
language questions. Semantic Web, 8(4):581–599.

Phil Hill. 2014. Online educational delivery models: A
descriptive view.

Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim,
and Gunhee Kim. 2017. Tgif-qa: Toward spatio-
temporal reasoning in visual question answering. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2758–2766.

Arbana Kadriu, Lejla Abazi-Bexheti, Hyrije Abazi-Alili,
and Veland Ramadani. 2020. Investigating trends in
learning programming using youtube tutorials. Inter-
national Journal of Learning and Change, 12(2):190–
208.

Khushboo Khurana and Umesh Deshpande. 2021.
Video question-answering techniques, benchmark

datasets and evaluation metrics leveraging video cap-
tioning: a comprehensive survey. IEEE Access,
9:43799–43823.

Kyung-Min Kim, Min-Oh Heo, Seong-Ho Choi, and
Byoung-Tak Zhang. 2017. Deepstory: Video story qa
by deep embedded memory networks. arXiv preprint
arXiv:1707.00836.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
2018. Tvqa: Localized, compositional video ques-
tion answering. arXiv preprint arXiv:1809.01696.

Jie Lei, Licheng Yu, Tamara L Berg, and Mohit
Bansal. 2019. Tvqa+: Spatio-temporal ground-
ing for video question answering. arXiv preprint
arXiv:1904.11574.

Vanessa Lopez, Victoria Uren, Enrico Motta, and
Michele Pasin. 2007. Aqualog: An ontology-driven
question answering system for organizational seman-
tic intranets. Journal of Web Semantics, 5(2):72–105.

Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and
Bohyung Han. 2017. Marioqa: Answering questions
by watching gameplay videos. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2867–2875.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 4631–4640.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video question answering via gradually refined atten-
tion over appearance and motion. In Proceedings of
the 25th ACM international conference on Multime-
dia, pages 1645–1653.

Weijiang Yu, Haoteng Zheng, Mengfei Li, Lei Ji, Lijun
Wu, Nong Xiao, and Nan Duan. 2024. Learning from
inside: self-driven siamese sampling and reasoning
for video question answering. In Proceedings of the
35th International Conference on Neural Information
Processing Systems, NIPS ’21, Red Hook, NY, USA.
Curran Associates Inc.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. 2019. Activitynet-qa:
A dataset for understanding complex web videos via
question answering. Preprint, arXiv:1906.02467.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

9



Proceedings of the First Workshop of Evaluation of Multi-Modal Generation, pages 10–23
January 20, 2025. ©2025 Association for Computational Linguistics

CVT5: Using Compressed Video Encoder and UMT5 for Dense Video
Captioning

Mohammad Javad Pirhadi1, Motahhare Mirzaei1 and Sauleh Eetemadi2

1Iran University of Science and Technology, 2University of Birmingham Dubai
mohammad_pirhadi@comp.iust.ac.ir, m_mirzaei96@comp.iust.ac.ir,

s.eetemadi@bham.ac.uk

Abstract

The dense video captioning task aims to de-
tect all events occurring in a video and de-
scribe each event using natural language. Un-
like most other video processing tasks, where
it is typically assumed that videos contain only
a single main event, this task deals with long,
untrimmed videos. Consequently, the speed
of processing videos in dense video caption-
ing is a critical aspect of the system. To the
best of our knowledge, all published work on
this task uses RGB frames to encode input
videos. In this work, we introduce the use
of compressed videos for the first time in this
task. Our experiments on the SoccerNet chal-
lenge demonstrate significant improvements in
both processing speed and GPU memory foot-
print while achieving competitive results. Ad-
ditionally, we leverage multilingual transcripts,
which seems to be effective. The encoder in
our proposed method achieves approximately
5.4× higher speed and 5.1× lower GPU mem-
ory usage during training, and 4.7× higher
speed and 7.8× lower GPU memory usage
during inference, compared to its RGB-based
counterpart. The code is publicly available
at https://github.com/mohammadjavadpirhadi/
CVT5.

1 Introduction

In the video captioning task, the input video is typ-
ically assumed to be very short, containing only
one main event. The desired output in this case
is a textual description of that event. However,
this assumption does not hold for most real-world
scenarios, where input videos are long, and mul-
tiple events occur at different times. The dense
video captioning task, first introduced by Krishna
et al. (2017), aims to detect all events in a long,
untrimmed video and generate a description for
each event using natural language. This task is
challenging because the model must not only rec-
ognize objects in the video but also understand the

(a) (b)

Figure 1: Comparison between two consecutive RGB
(left) and compressed frames (right). The upper frames
are identical and are the first frame of a video. The lower
frames are the second frames of the same video. In the
compressed format, the left frame represents the motion
vector, and the right frame represents the residual.

actions and interactions between them. Solving
this task bridges the fields of computer vision and
natural language processing, attracting increasing
attention. Dense video captioning has potential
applications for blind people, human-robot interac-
tion, and more. However, the proposed methods
must be fast and accurate, enabling the system to
detect and describe events in a timely manner using
reasonable computational resources.

To the best of our knowledge, all existing meth-
ods for dense video captioning use RGB frames
to encode the input video. However, there is a
significant amount of redundancy between consec-
utive RGB frames since most of the pixels remain
unchanged. This redundancy demands consider-
able processing time and resources while providing
minimal additional information. Video compres-
sion methods like H.264 significantly reduce the
resources required for storage and transmission by
keeping only a few frames intact and reconstructing
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the others using motion vectors and residuals. For
instance, consider a video corresponding to half of
a match in the SoccerNet dataset (Mkhallati et al.,
2023). With a frame rate of 2 frames per second
(FPS) and a resolution of 224× 224, the video con-
sists of 5,400 frames, requiring over 775MB of
storage without compression. However, compres-
sion reduces this size to approximately 78.5MB
making it about 10× smaller. Figure 1 illustrates
the comparison between two consecutive frames
when using RGB frames versus compressed ones.

To address these challenges, we propose an end-
to-end CNN-Transformer model to generate dense
captions using videos in the compressed domain.
Compressed videos consist of I-frames, motion vec-
tors, and residuals, with minimal redundancy be-
tween consecutive frames. As a result, our model
processes videos more efficiently, requiring less
time and fewer resources during both training and
inference. Additionally, we extract and utilize mul-
tilingual transcripts of the input video, which, as
our experiments show, positively impact the results.

The contributions of this paper are summarized
as follows:

1. We propose an end-to-end CNN-Transformer
model for solving the dense video captioning
task.

2. We leverage multilingual transcripts of the
videos.

3. Our experiments on the SoccerNet dataset
demonstrate significant improvements in pro-
cessing speed during both training (5.4×) and
inference (4.7×), along with a substantial re-
duction in GPU memory usage during both
training (5.1×) and inference (7.8×).

2 Related Work

2.1 Dense Video Captioning

Most previous work on dense video captioning fol-
lows a two-stage approach: first, event proposals
are generated, and then captions are created for
these events. E2vid (Huang et al., 2020) sepa-
rately extracts text and video features and passes
them to a decoder to generate captions. The video
frame features are extracted using a pretrained vi-
sion model on each RGB frame individually, which
are then passed through a transformer. This pa-
per employs three different pretraining tasks: text,
text-video, and segment alignment and ordering.

Similarly, PDVC (Wang et al., 2021) uses a pre-
trained RGB frame encoder followed by a trans-
former, along with N learnable queries to generate
N events. After predicting the number of events
in the video, it selects the most probable proposals
as final events. This work utilizes a deformable
transformer (Zhu et al., 2020) for faster conver-
gence. GVL (Wang et al., 2023) also employs
learnable queries after extracting features from
RGB frames. This paper extracts features from
ground truth labels and trains the model using two
tasks: event-to-text generation and text-to-event
generation and introduce semantic cost in addition
to localization cost to enhance robustness against
annotation noise. Vid2Seq (Yang et al., 2023) lever-
ages a vast amount of YouTube videos available
in the HowTo100M (Miech et al., 2019) and YT-
Temporal-1B (Zellers et al., 2022) datasets to pre-
train a transformer model with two objectives: gen-
eration and denoising. A key contribution of this
work is the use of time tokens to generate events in
a single stage, which proves effective. In our work,
we utilize the common two-stage model as training
a model for directly predicting event times requires
a substantial amount of data.

2.2 Compressed Video Processing

Compressed videos have primarily been used in
the action recognition task. Wu et al. (2017) first
demonstrated that processing videos in the com-
pressed domain improves both model speed and
accuracy in the context of action recognition. Pre-
vious work on compressed domain action recogni-
tion can be categorized into three main approaches:
using I-frames + residuals (e.g. Battash et al., 2020
and Abdari et al., 2019), using I-frames + motion
vectors (e.g. Wang and Torresani, 2022 and He
et al., 2022), and using I-frames + motion vectors
+ residuals (e.g. Wu et al., 2017 and Mou et al.,
2024). There are also a few rare works that utilize
macro-blocks (e.g. Chadha et al., 2017) or DCT
coefficients (e.g. Ming et al., 2023). However, the
common methods primarily rely on the three main
categories mentioned above. Our best model uses
I-frames and motion vectors only, as our experi-
ments show that, at least for the SoccerNet dataset,
including residuals has a negative effect.

3 Method

As mentioned above, the goal of our proposed
method is to leverage compressed videos to en-
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Figure 2: Two different possible structures of com-
pressed videos. P-frames only refer to their previous
frame, while B-frames can refer to any frame before or
after them within their GOP. (Ming et al., 2024)

hance processing speed and reduce GPU memory
usage. To achieve this, we first explain the struc-
ture of compressed videos in section 3.1. Then, we
introduce the proposed model in section 3.2.

3.1 Compressed Video Structure

Modern video codecs like H.264 utilize temporal
redundancy between successive video frames
to compress video data. These codecs break
down the video into multiple groups of pictures
(GOPs) based on the differences between frames.
Each GOP can be reconstructed independently
without relying on other GOPs. Higher rates of
change result in smaller GOPs, while lower rates
of change produce larger GOPs. The first frame
of each GOP is always an I-frame, which is a
complete RGB image that can be reconstructed
independently. The remaining frames can be either
P-frames (predictive coded frames) or B-frames
(bi-predictive coded frames). Both types of frames
consist of a motion vector and a residual. The
motion vector represents the movement of each
macro-block in the current frame relative to the
reference frame, and the residual captures the
difference in color between frames after applying
the motion vector to the reference frame. The
reconstruction process can be formulated as
follows:

Frec = ApplyMV (Fref ,mv) + res (1)

where Frec is the reconstructed frame,
ApplyMV applies the motion vector to the
reference frame, Fref is the reference frame,
mv is the motion vector and res is the residual.
Each macro-block typically consists of a group
of 4 × 4 pixels, so the number of elements in the
motion vector is 16× lower than in the original
RGB frame. The difference between P-frames
and B-frames is that a B-frame can refer to any
frame before or after it within its GOP, whereas a
P-frame only refers to the previous frame. Using
B-frames provides higher compression rates but
makes it more challenging for the model to learn
patterns. Therefore, we configure the FFMPEG
package (Tomar, 2006) to use only P-frames.

3.2 Model Architecture

Figure 3 presents an overview of the proposed
architecture. After preprocessing, extracting I-
frames, motion vectors, and residuals, and dividing
the input video into chunks, each chunk is pro-
cessed through the following stages: 1. Encoding
I-frames, motion vectors, and residuals separately.
2. Encoding the past, present, and future periods
separately using a common transformer encoder
(Vaswani et al., 2017). 3. Encoding the entire chunk
and predicting each event individually. 4. If an
event has occurred, generating a caption using the
encoded frames of the entire chunk and transcript
features from the present period.

Each of these steps is explained in more detail
in the following sections.

3.2.1 Preprocess Videos
First, we preprocess the original videos using the
FFMPEG package. After this processing, the
videos are H.264 encoded, include only I-frames
and P-frames, and have a resolution of 224× 224
with a frame rate of 2. Typically, the H.264 codec
creates GOPs of varying lengths based on the rate
of change between frames. We investigated the
impact of this behavior by comparing it to a setup
where we enforced a GOP size equal to our short
memory length. The experiments indicate that us-
ing a dynamic GOP size benefits the model. For
more details, refer to section 4.6.3.

3.2.2 Extract I/P-frames
We extract I-frames, motion vectors, and residuals
using the tool described in (Shen, 2023). I-frames
and residuals are saved in .jpg format, while motion
vectors are saved in .png format. This is because
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Figure 3: Architecture overview. The process involves multiple stages: Encoding I-frames, motion vectors, and
residuals separately; Encoding the past, present, and future periods using a common transformer encoder; Encoding
the entire chunk and predicting events individually; and, if any event occurs, generating captions using the encoded
frames of the entire chunk and transcript features from the present period.

motion vectors are more sensitive to noise, which
can be damaged through .jpg compression.

3.2.3 Extract I-frames Features

We use the pooler output of the CLIP-vit-base-
patch32 model (Radford et al., 2021), available
on HuggingFace (Wolf et al., 2020). Given that
soccer game frames share many common elements,
such as the ball, players, and pitch, we selected the
CLIP model over ResNet (He et al., 2015). CLIP
is more likely to provide well-distinguishable fea-
tures for different frames of a soccer game due
to its training on image-caption pairs, which con-
sider the relative positions of entities within an
image—important for generating captions. In con-

trast, ResNet is trained solely to predict the pres-
ence of a class in an image. To expedite the training
process, we save the extracted features to disk.

3.2.4 Extract Transcripts Features

Since the videos are multilingual, we extract
their transcripts using the Whisper-large-v3 model
(Radford et al., 2022), which can detect the lan-
guage of the input audio and perform automatic
speech recognition (ASR). We utilize the ’re-
turn_timestamps’ argument of this model to ob-
tain the timestamps for transcript chunks. These
timestamps are then used to align the transcript
chunks with the corresponding video frames. To
extract features from the transcripts, we first divide
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them into chunks and then use the UMT5 encoder
(Chung et al., 2023) , a multilingual version of T5.
As with the video features, we save the extracted
transcript features to expedite the training process.

3.2.5 Video Encoder
The video encoder has three stages:

1. Encode frames individually: I-frame features
are pre-extracted. Motion vectors and residu-
als are encoded using two separate ResNet-
18 models as they can be processed using
lightweight neural networks. Each frame in
the current chunk is encoded using its respec-
tive encoder. The motion vectors and resid-
uals of a P-frame are concatenated and pro-
jected to match the I-frame feature size using
a fully connected layer. Finally, frames are
arranged according to their positions in the
original video.

2. Encode periods: Frame type encodings, which
are learnable and help the model differentiate
between I-frames and P-frames, are added to
the frames. The frames are then divided into
three periods (past, present, future) of equal
size (short memory length). A common pe-
riod encoder, a transformer encoder, is used
to encode the frames within each period con-
cerning each other.

3. Encode the whole chunk: Period type encod-
ings, which are learnable and help the model
distinguish different periods, are added. A fi-
nal transformer encoder encodes the frames
of the entire chunk with respect to each other.

Note that all transformer encoders are standard,
utilizing sinusoidal positional encoding.

3.2.6 Event Spotting
A fully connected layer with a sigmoid activation
function is applied to the mean of the encoded
frames of each period to predict whether an event
has occurred in the current period. The present pe-
riod is the primary focus, while the past and future
periods aid in feature extraction. A softmax is not
used because events can occur simultaneously (e.g.,
a penalty and a yellow card).

3.2.7 Decoder
The decoder uses the UMT5 architecture and pre-
trained weights to generate captions. The input con-
sists of encoded video frames concatenated with

transcript features from the present period in time
dimension. The output is the caption corresponding
to the present period. Multiple captions for differ-
ent events within the same period are separated by
the ’@’ symbol. The decoder is trained solely on
positive samples.

4 Experiments

All experiments were conducted using a single
NVIDIA A100-SXM4-80GB GPU.

4.1 Two-stage Training
We use a standard two-stage training process: first,
training the encoder and the spotting head, then
freezing them and fine-tuning the decoder. End-
to-end training yielded worse results. In the first
stage, a weighted random sampling strategy is used,
and in the second stage, all positive samples are
utilized.

4.2 Sampling Strategy
As mentioned earlier, the video is divided into
chunks of length equal to the short memory length
(a hyperparameter). The model is also provided
with the previous and next chunks to utilize past
and future information. The SoccerNet dataset is
highly imbalanced, with far fewer chunks contain-
ing events than those without. To mitigate this, we
assign higher weights to positive samples during
sampling. The weights are calculated as follows:

ewc = (E − Ec)/E (2)

wi =
C∑

c=0

yic × ewc (3)

where E is the total number of events in chunks,
Ec is the number of events in class c, ewc is the
weight of event class c, yic is the c-th class of the
i-th sample’s label, and wi is i-th sample’s weight.

And negative sample weights are calculated as
follows:

nw =

N∑

i=0

wi/NS (4)

wi = nw/NS (5)

where nw is the total weight of the negative
samples, which equals the total weight of positive
samples, and NS is the number of negative sam-
ples. As a result, each epoch contains an equal
number of positive and negative samples.
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4.3 Loss Function
Despite this sampling strategy, the model still en-
counters more zeros than ones, as the number of
ones in a label is significantly smaller. Therefore,
we use the focal loss function to further address
the dataset imbalance, experimenting with different
values of alpha while keeping gamma fixed at 2.

4.4 Implementation Details
Our model is implemented using PyTorch. As men-
tioned, videos are resized to 224× 224 resulting in
motion vectors of size 56×56 and residuals of size
224× 224. The residuals are resized to 56× 56 to
match the size of the motion vectors. For ablation
studies, the model is trained on the SoccerNet train-
ing set and evaluated on the validation set. Each
training epoch in this phase contains 18,000 sam-
ples. For comparison with state-of-the-art models,
the model is trained on the combined training, vali-
dation, and test sets and evaluated on the challenge
set using the Eval.ai platform (EvalAI). Each train-
ing epoch in this part has 29000 samples for the
first training stage. Each training epoch in this
phase contains 29,000 samples. The batch size is
fixed at 16 for all experiments. Both the period
encoder and the video encoder are 2-layer trans-
former encoders with a hidden size of 1536 and 32
attention heads. We use the AdamW (Loshchilov
and Hutter, 2017) optimizer with β1 = 0.9 and
β1 = 0.999. The cosine learning rate scheduler
starts from 1e − 4 and ends at 0.35 of the cosine
cycle, yielding a final learning rate of 2e− 5.

4.5 Evaluation Metrics
We use the SoccerNet challenge metrics:
METEOR, BLEU@1, BLEU@2, BLEU@3,
BLEU@4, ROUGE_L, CIDEr, recall, and pre-
cision. BLEU@N measures n-gram precision,
METEOR assesses semantic accuracy, ROUGE
evaluates word order, and CIDEr measures
the degree to which the caption conveys key
information.

4.6 Ablation Study
We conducted multiple ablation studies to evalu-
ate the impact of various changes on model perfor-
mance. The best model from each part was selected
for further evaluation. In the tables, bold = best,
underline = second best, TS = 1 stage training or 2
stage training, SML = short memory length, GOP =
size of each group of pictures, Res = Use residuals,
Trans = Use transcripts.

4.6.1 Residuals and Transcripts
The first experiment assessed the usefulness of
residuals and transcripts. We tested all four possi-
ble combinations, and Table 1 shows the results.

As shown, using residuals degrades the model
accuracy a lot, possibly because this reason: as
residuals have visual structure as I-frames and the
differences between successive frames in soccer
videos are negligible, the residuals cannot add any
information.

Using transcripts, however, can be beneficial,
as indicated by the higher CIDEr score, which re-
flects better key point capture in generated captions.
Other metrics can be ignored for comparison, as
they are nearly identical and do not follow a con-
sistent pattern.

4.6.2 Short Memory Length
We cannot use a short memory length greater than
60 (30s) as the challenge evaluation uses a 30s
window around the ground truth. Table 2 shows
the results for two different short memory lengths.

Most metrics improve with a short memory
length of 60 as a larger chunk size provides the
model with more information for caption genera-
tion.

4.6.3 GOP Size
As mentioned earlier, the H.264 codec typically
uses a dynamic GOP (Group of Pictures) size,
which adjusts according to the frequency of
changes between successive frames. A higher fre-
quency of changes results in a smaller GOP size,
leading to more I-frames in areas with significant
changes, and vice versa. To evaluate the impact of
this, we conducted an experiment where we forced
the FFMPEG package to set the GOP size to a short
memory length. Table 3 presents the results.

The results demonstrate that forcing a short GOP
size significantly degrades performance, particu-
larly in the CIDEr metric, which measures the
alignment of key concepts. Thus, allowing FFM-
PEG to use a dynamic GOP size is beneficial for
the model’s performance.

4.6.4 Two Stage Training
We also investigated whether a two-stage training
approach is more effective than training the model
all at once. As shown in Table 4, two-stage training
yields better results. This is because negative sam-
ples can negatively impact the decoder component
of the model when trained simultaneously.
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TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✗ 0.9 33.29 27.50 24.11 21.63 19.21 26.40 18.38 82.95 62.11
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 auto ✓ ✗ 0.9 30.24 25.13 22.28 20.09 18.00 22.48 13.61 91.86 60.30
2 60 auto ✓ ✓ 0.9 30.01 25.48 22.83 20.78 17.71 23.61 15.98 91.86 60.29

Table 1: Ablation study about impact of using residuals and transcripts.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 40 auto ✗ ✓ 0.9 32.33 27.22 24.17 21.85 19.11 25.16 17.03 91.61 59.44

Table 2: Ablation study about impact of different length of short memory.

4.6.5 Focal Loss Alpha

We experimented with three different values of the
alpha parameter in focal loss. The results indicate
that a higher alpha increases recall at the cost of
lower precision, and vice versa. According to Table
5 the optimal alpha value is 0.6. The experiments
reveal a strong correlation between precision and
generation metrics.

4.6.6 Generation Method

Initially, we observed that samples with multiple
events often resulted in empty captions. We exam-
ined whether filtering these out would be benefi-
cial. Additionally, we experimented with different
generation strategies, including beam search and
top-k+top-p sampling. Table 6 shows that the best
configuration is to use greedy generation while ig-
noring blank captions.

4.7 Comparison with RGB

To assess the utility of using compressed videos,
we compared our proposed model with an RGB
variant where original RGB frames were used in-
stead of I/P-frames. Results in Table 7 show that
our proposed method achieves competitive results
compared to its RGB variant.

Moreover, to understand the impact of using
compressed videos on speed and GPU memory
consumption, we conducted another comparison
against the RGB variant. The results in Table 8 indi-
cate approximately 5.4× faster training speed and
5.1× lower GPU memory usage, as well as 4.7×
faster inference speed and 7.8× lower GPU mem-
ory usage compared to the RGB-based approach,
which is significant. These results were obtained
using the PyTorch profiler.

4.8 Comparison with SOTA methods

We evaluated our proposed model against state-of-
the-art (SOTA) models on the challenge set of the
SoccerNet dataset. The evaluation was conducted
using the best configuration, which includes two-
stage training, a short memory length of 60, auto
GOP size, no residuals, inclusion of transcripts, a
focal loss alpha of 0.6, and greedy generation while
ignoring blank captions.

Table 9 presents the results, where our model
ranks second in almost all metrics and exhibits
performance comparable to SOTA models. Once
again, a positive correlation between precision and
generation metrics is evident. These results suggest
that compressed video retains most of the necessary
information with minimal redundancy.

4.9 Qualitative Results

As discussed in the appendix, Table 10 provides ex-
amples comparing the model’s output to the ground
truth, highlighting the model’s bias towards corner
events and events with no comments. Similar re-
sults are shown in Figure 4, which presents the
confusion matrix. Further examples, along with
frames from the time intervals used for predictions,
are shown in Figures 5, 6, 7, and 8.

5 Conclusion

In this paper, we introduce a CNN-Transformer
architecture for dense video captioning using com-
pressed videos for the first time. The experiments
demonstrate that our proposed model not only
achieves competitive performance with SOTA mod-
els but also significantly reduces GPU memory us-
age and improves processing speed. This suggests
that compressed videos could potentially become
the standard for video processing, replacing tradi-
tional RGB frames processing.
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TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 60 ✗ ✓ 0.9 29.66 26.22 24.13 22.43 18.21 24.33 11.91 91.77 56.86

Table 3: Ablation study about impact of different different GOP sizes.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
1 60 auto ✗ ✓ 0.9 32.17 26.31 23.02 20.57 20.24 25.20 17.02 93.60 56.86

Table 4: Ablation study about impact of different training strategies.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 auto ✗ ✓ 0.6 36.70 30.12 26.24 23.32 21.94 32.48 28.77 32.44 72.46
2 60 auto ✗ ✓ 0.4 34.66 28.33 24.60 21.80 22.54 32.25 28.54 23.99 74.81

Table 5: Ablation study about impact of different values of alpha in focal loss.

IB NB TOP_K TOP_P α B@1 B@2 B@3 B@4 M R@L C recall precision
✗ 1 0 0 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
✓ 1 0 0 0.9 33.89 27.65 24.06 21.43 21.53 28.49 21.33 82.92 61.12
✓ 5 0 0 0.9 28.40 22.38 19.32 17.12 20.18 25.99 15.64 82.92 61.10
✓ 1 50 0.95 0.9 30.27 24.34 21.19 18.87 19.81 25.90 13.24 82.92 61.18

Table 6: Ablation study about impact of different generation strategies. (IB = Ignore blanks, NB = Number of
beams)

RGB TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
- 2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
✓ 2 60 auto - - 0.9 34.05 28.60 25.32 22.78 20.39 26.84 22.04 86.26 60.79

Table 7: Accuracy comparison with RGB variant of the same architecture.

Video Encoder Train Time (s) Train GPU Mem. (TB) Inference Time (s) Inference GPU Mem. (TB)
Compressed Video 15.13 1.5 8.67 0.29

RGB 81.77 7.63 40.90 2.26

Table 8: Speed and GPU memory footprint comparison with RGB variant of the same architecture. The values
shows the total time and total amount of GPU memory spent to encode the frames of all of the samples of a match
(Encoder part only).

Team B@1 B@2 B@3 B@4 M R@L C recall precision
OPPO 35.55 31.03 28.13 25.65 26.66 32.33 69.73 24.59 68.59
HZC 29.73 24.52 21.44 19.13 21.30 24.56 24.76 98.68 51.19

Baseline 2 30.01 24.80 21.74 19.44 21.25 24.65 25.68 98.68 51.21
justplay 29.83 24.68 21.66 19.38 21.20 24.34 25.89 98.68 50.99
aisoccer 29.53 24.42 21.42 19.15 21.02 24.31 23.72 98.63 50.83

Baseline 1 11.91 9.97 8.83 7.97 15.24 10.69 16.33 98.97 23.92
CVT5 (Ours) 36.64 29.60 25.55 22.59 22.17 32.02 26.84 42.16 72.97

Table 9: Comparison with state-of-the-art models (Leaderboard 2023) (Cioppa et al., 2023).

17



6 Limitations

The primary limitation of this work is that it was
only evaluated on a single dataset. The results may
vary significantly on other benchmarks, as events
in a soccer game differ greatly from, for example,
cooking events. It would be beneficial to evaluate
the model on additional datasets.

Another limitation is that the quality of gener-
ated captions is heavily influenced by the low pre-
cision in event detection. This issue arises for sev-
eral reasons: 1. Low precision means the model
may predict an event where there is none, lead-
ing to incorrect captions. 2. Low precision also
makes it difficult for the encoder to distinguish be-
tween events, complicating the task of generating
distinct captions for different events. 3. The Soccer-
Net dataset has a highly imbalanced distribution of
events, where the model’s outputs are often biased
toward the majority class. As shown in Table 9 on
the 2023 leaderboard, achieving a certain accuracy
level is easy, but improving beyond that is challeng-
ing due to the difficulty in accurately predicting
minority class events. Future work could focus
on strategies to better learn and predict minority
classes.
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A Qualitative Results

Table 10 shows examples of the model’s output
compared to the ground truth. The model’s bias to-
wards corner events and events with no comments
is evident in these examples. Similar results are
shown in Figure 4 which presents the confusion ma-
trix of the model’s output and ground truth. Addi-
tionally, when the spotting head is uncertain about
the occurrence of an event, the captioner module
often generates incorrect captions. Occasional lan-
guage modeling errors, such as repetitive tokens,
are also observed.

Examples of the model’s output, along with the
frames from the time intervals used for predictions,
are shown in Figures 5, 6, 7, and 8. The frame
rate is 4 times lower than the model’s input sam-
pling rate, meaning one frame is shown every 2
seconds. The images start from the top left and end
at the bottom right. As observed in these examples,
even when the model makes a mistake, the images
closely resemble the generated descriptions, mean-
ing that these examples are challenging. However,
it can also be seen that the model does not pay
enough attention to small details within the frames.
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Confidence GT Event G Event GT Caption G Caption

0.88 corner corner [PLAYER] ([TEAM]) at-
tempts to find a teammate
with the corner, but the ef-
fort is snuffed out by the
goalkeeper.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.52 - corner [PLAYER] ([TEAM])
smashes the ball towards
goal from the edge of the
penalty box, but it fails to
bother the goalkeeper as it
hits the defensive wall.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.59 soccer-ball soccer-ball Goal! [PLAYER] feeds
[PLAYER] ([TEAM]), who
taps the ball into an empty
net. He makes it 1:0.

[PLAYER] ([TEAM]) is un-
able to feed a low pass into
the path of one of his team-
mates. The ball goes out of
play and [TEAM] will have
a goal kick.

0.81 corner corner [PLAYER] ([TEAM])
launches a powerful cross
from the corner into the box,
but the ball is intercepted by
the defender. The linesman
makes the right call and
[TEAM] will have a corner.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.89 substitution substitution The referee allows time for
a substitution. [PLAYER]
will be replaced by
[PLAYER] ([TEAM]).

[COACH] has decided to
introduce fresh legs, with
[PLAYER] ([TEAM]) re-
placing [PLAYER].

0.66 - - [PLAYER] ([TEAM]) is
having a lively performance.
He is causing problems and
wanting the ball at every op-
portunity.

[PLAYER] ([TEAM])
sends a cross into the box,
[TEAM]]]] ([TEAM]]),
[TEAM]] will have a
chance to score from a free
kick. [TEAM] will have a
chance

0.54 - - [PLAYER] ([TEAM])
whips the ball in from the
long-range free kick, but
the first man gets it clear.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.68 - - [PLAYER] ([TEAM]) picks
up a rebound inside the
penalty area and drills a shot
to the bottom right corner,
but is denied by a reflex save
from [PLAYER]. [TEAM]
have been awarded a corner
kick. The referee and one of
his assistants both point at
the corner flag.

[PLAYER] ([TEAM])
sends a cross into the box,
but the opposition’s defence
clears the ball away to
eliminate the danger. The
referee blows his whistle,
[TEAM] are awarded a
corner kick

0.58 - - [PLAYER] ([TEAM]) re-
ceives a pass and decides
to smash the ball from long
range, but his poor effort
sails high over the bar.

[PLAYER] ([TEAM])
sends a cross into the box,
but [PLAYER] comes off
his line to gather the ball.

0.86 substitution substitution The manager makes a sub-
sitution with [PLAYER]
([TEAM]) coming on for
[PLAYER].

[COACH] has decided to
introduce fresh legs, with
[PLAYER] ([TEAM]) re-
placing [PLAYER].

0.67 - - [PLAYER] ([TEAM]) was
trying to get to the ball but
clattered into the legs of the
opponent as well. [REF-
EREE] blows his whistle for
an infringement. [TEAM]
are awarded a free kick.
Let’s see what they create
from this.

[PLAYER] ([TEAM])
sends a cross into the box,
but the opposition’s defence
clears the ball away to
eliminate the danger.

Confidence GT Event G Event GT Caption G Caption

0.82 corner corner [PLAYER] ([TEAM]) takes
the resulting corner which is
well defended.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.69 - corner [PLAYER] ([TEAM]) whips
the ball in, but it fails to
reach any of his teammates
as the opposition’s defence
averts the threat. The lines-
man points to the corner flag,
[TEAM] are going to take it.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.85 corner corner [PLAYER] ([TEAM]) swings
in a cross from the corner, but
[PLAYER] reads it well and
gathers the ball.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball to safety. The ball goes
out of play and [TEAM] have
been awarded a corner kick.

0.53 - - He should have done better.
[PLAYER] ([TEAM]) is af-
forded space to connect with
a [PLAYER] cross, but his
header from the centre of the
box flies well wide of the left
post.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball to safety.

0.68 corner - [PLAYER] ([TEAM]) goes
over to take the corner kick
and it looks like he will send
the ball into the penalty box.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.54 - - What a goal-scoring opportu-
nity! [PLAYER] ([TEAM])
finds some space inside the
box and gets in a strike, but
the shot is brilliantly blocked
by one of the defending play-
ers sliding in.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.50 - - [PLAYER] ([TEAM]) pro-
duces a lovely ball into the
penalty area but the defender
manages to intercept and com-
fortably averts the danger.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.50 - - [PLAYER] ([TEAM]) at-
tempts to slip the ball through
the defence, but is unable to
find any of his teammates.

[PLAYER] ([TEAM]) sends
a cross into the box, but
[PLAYER] comes off his line
to gather the ball.

0.58 corner corner [PLAYER] ([TEAM]) swings
in the corner kick, but one of
the defenders leaps highest to
head the ball away.

[PLAYER] ([TEAM]) takes
the corner kick and sends a
lovely ball into the penalty
area, but the opposition’s de-
fence is ready and knocks the
ball to safety.

penalty Poor challenge! [PLAYER]
([TEAM]) is penalised for
tripping and [REFEREE]
blows his whistle. PENALTY
to [TEAM]! Great chance to
score.

0.58 y-card - [PLAYER] ([TEAM]) com-
mits a foul and is shown a yel-
low card without any hesita-
tion from the referee.

[PLAYER] ([TEAM]) is pe-
nalised for holding. [REF-
EREE] signals a set piece.

soccer-ball [PLAYER] ([TEAM]) sends
[PLAYER] the wrong way
and fires the penalty into the
middle of the goal!

Table 10: Some examples of the model’s output compared to the ground truth
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Figure 4: Confusion matrix on the SoccerNet validation set
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Figure 5: Model output: [PLAYER] ([TEAM]) takes the corner, but it’s intercepted by the defender. Ground truth:
[PLAYER] ([TEAM]) attempts to find a teammate with the corner, but the effort is snuffed out by the goalkeeper.

Figure 6: Model output: [PLAYER] ([TEAM]) takes the corner, but it’s intercepted by the defender. Ground truth:
[PLAYER] ([TEAM]) smashes the ball towards goal from the edge of the penalty box, but it fails to bother the
goalkeeper as it hits the defensive wall.
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Figure 7: Model output: [PLAYER] ([TEAM]) is unable to feed a low pass into the path of one of his teammates.
The ball goes out of play and [TEAM] will have a goal kick. Ground truth: Goal! [PLAYER] feeds [PLAYER]
([TEAM]), who taps the ball into an empty net. He makes it 1:0.

Figure 8: Model output: [COACH] has decided to introduce fresh legs, with [PLAYER] ([TEAM]) replacing
[PLAYER]. Ground truth: The referee allows time for a substitution. [PLAYER] will be replaced by [PLAYER]
([TEAM]).
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Abstract
Generative visual language models (VLMs)
have recently shown potential across various
downstream language-and-vision tasks. At the
same time, it is still an open question whether,
and to what extent, these models can prop-
erly understand a multimodal context where
language and vision provide complementary
information—a mechanism routinely in place
in human language communication. In this
work, we test various VLMs on the task of gen-
erating action descriptions consistent with both
an image’s visual content and an intention or
attitude (not visually grounded) conveyed by a
textual prompt. Our results show that BLIP-2
is not far from human performance when the
task is framed as a generative multiple-choice
problem, while other models struggle. Further-
more, the actions generated by BLIP-2 in an
open-ended generative setting are better than
those by the competitors; indeed, human anno-
tators judge most of them as plausible contin-
uations for the multimodal context. Our study
reveals substantial variability among VLMs in
integrating complementary multimodal infor-
mation, yet BLIP-2 demonstrates promising
trends across most evaluations, paving the way
for seamless human-computer interaction.

1 Introduction

In recent years, transformer-based generative visual
language models (VLMs) have shown outstand-
ing results in many downstream tasks. Similar
to what has happened in NLP, where pre-trained
generative models have supplanted previous archi-
tectures thanks to their flexibility and portability,
VLMs have proven effective in solving language-
and-vision tasks by turning them into generative
problems. This is possible thanks to their massive
multimodal pre-training, which typically builds on
a pre-trained language model and image processing
model. This has enabled systems that can, in zero-
shot mode and without further fine-tuning, seam-
lessly describe the content of an image, answer

If I feel athletic. . . I will. . .

(a) stand and take
a break with the
baseball players ✗

(b) play baseball
with friends ✓

(c) play tennis
with friends ✗

Figure 1: We test generative visual language models’
(VLMs) abilities to combine complementary informa-
tion brought into context by the two modalities. In this
example from the BD2BB dataset (Pezzelle et al., 2020)
(slightly edited for space reasons), only one of the ac-
tions on the right, (b), is consistent with both the textual
prompt and the image on the left. As for (a) and (c), they
are plausible based on the image or the textual prompt,
respectively, but not on the combination of both.

questions about it, or engage in a dialogue (see
Caffagni et al., 2024, for an overview). This might
suggest that VLMs have skills similar to those
needed for meaningful multimodal communication.

In real-life multimodal communication, human
speakers continuously integrate complementary in-
formation from various modalities, including lan-
guage and vision, to understand and convey mes-
sages and properly act in various situations (Partan
and Marler, 1999; Benoît et al., 2000; Forceville,
2020). An example of such complementarity is
shown in Figure 1: If someone observing the scene
depicted in the image feels athletic, they would
likely take an action that is consistent with both the
visual content and their attitude or intention, i.e.,
play baseball with friends. In contrast, actions that
are plausible given either the image or the textual
intention, but not both, would not be considered.
Note that making this type of inference is also key
for any multimodal model that aims to be com-
municatively plausible and useful. Consider the
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case of a virtual assistant that has access to the vi-
sual context and a spoken or written request from
a user. If asked to recommend an appropriate ac-
tivity to do—Hey, I feel adventurous today. What
do you recommend I do?—the assistant should sug-
gest something appropriate to the context surround-
ing the user and obviously in line with their atti-
tude. Despite the relevance of the problem, only
a few studies have investigated, to date, whether
language-and-vision models master this ability. Be-
fore the generative ‘revolution’ that has recently
affected VLMs, Pezzelle et al. (2020) proposed
the Be Different to Be Better (BD2BB) benchmark
(see an example in Figure 1) to test the ability of
multimodal encoders such as LXMERT (Tan and
Bansal, 2019) to integrate complementary informa-
tion. In that study, these models were shown to lag
far behind human intuitions, leaving ample room
for improvement in future systems. To the best
of our knowledge, no subsequent work addressed
whether generative VLMs have filled this gap.

In this research, we use the BD2BB benchmark
and test how several generative VLMs deal with it.
We do so employing two main experiments. First,
we challenge the models to solve the task in its
original multiple-choice format, i.e., by picking,
for a given image, one among 5 candidate actions
(I will. . . ) that we give to the model via prompting
together with the intention (If I. . . ). We evaluate
model performance in terms of accuracy, that we
measure both extrinsically (considering the label,
corresponding to a given action, that is output by
the model) and intrinsically (looking at the proba-
bility assigned by a model to each action following
the same intention). Second, we test VLMs in the
setup that best suits them, that is, by letting them
generate an action based on the image and the in-
tention. In this case, we assess model performance
using both a reference-based, automatic metric (we
compute BERTScore similarity between the gener-
ated action and the target one from BD2BB) and
a reference-free, human-based evaluation (we ask
annotators to judge whether a certain action is good
for a given <image, intention> pair).

The results of our first experiment show that,
while most tested models hover around the chance
level, BLIP-2 achieves fairly high accuracy, much
closer to human performance than LXMERT (re-
ported in Pezzelle et al., 2020). Similarly, in our
second experiment, the actions generated by BLIP-
2 are deemed plausible by human participants in

most cases, which is not the case for other mod-
els. Taken together, these results highlight sub-
stantial variability across VLMs in their ability to
combine complementary multimodal information.
At the same time, the promising trends exhibited
by BLIP-2 reveal that this model is capable of
understanding—to some extent—the visual scene,
the intention, and their complex interaction.

2 Related Work

2.1 Generative Language-and-Vision Models

With the introduction of Transformers (Vaswani
et al., 2017), NLP research has experienced un-
precedented development. This, in turn, influenced
the work on language and vision processing, which
followed the same ‘evolutionary’ steps. First, based
on Masked Language Models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
the community proposed many multimodal en-
coders, either single-stream (i.e., jointly processing
language and vision from the beginning), such as
UNITER (Chen et al., 2020), VL-BERT (Su et al.,
2019), and VisualBERT (Li et al., 2019), or dual-
stream (i.e., processing language and vision sepa-
rately, and later combining them through a series
of multimodal layers), such as LXMERT (Tan and
Bansal, 2019) and ViLBERT (Lu et al., 2019).

Later, in the wake of the success of autore-
gressive Large Language Models (LLMs) such as
GPT (Radford et al., 2019), OPT (Zhang et al.,
2022) or LLaMA (Touvron et al., 2023), the
language-and-vision community has taken a gener-
ative direction. With such an approach, answering
questions about an image (VQA) or describing its
content (IC) can be done by simply feeding the
model with the image and the appropriate prompt.
Various generative language-and-vision models
have been proposed in recent years, such as BLIP-
2 (Li et al., 2023), Flamingo (Alayrac et al., 2022),
FROMAGe (Koh et al., 2023), MAPL (Mañas et al.,
2022), and IDEFICS (Laurençon et al., 2023). In
general, a common feature of all these models
is that they leverage a pre-trained text-only LLM
and a visual encoder, on top of which a relatively
lightweight trainable network is learned. Such a
network—which can consist of a bunch of Trans-
former (BLIP-2, Flamingo, IDEFICS), fully con-
nected (MAPL), or linear layers (FROMAGe)—is
responsible for connecting the two modalities and
making the model capable of solving multimodal
tasks. Using this strategy, generative language
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and vision models have achieved results never ap-
proached before (e.g., when introduced, Flamingo
was the best-performing model on 16 multimodal
tasks). Furthermore, their architecture makes these
models much more flexible and portable than their
predecessors, as they can be applied, without any
fine-tuning, to virtually any unseen task.

2.2 Complementary Language and Vision

The models described above have been quite exten-
sively tested in various downstream tasks, such as
Visual Question Answering (Antol et al., 2015) and
Image Captioning (Bernardi et al., 2016), which
typically require dealing with aligned information
from language and vision. To illustrate, these tasks
challenge the models to locate a phrase or sentence
in the image, retrieve information from it, or verify
that what is depicted complies with a description.
Comparably less attention has been paid to assess-
ing whether, and to what extent, they can genuinely
combine complementary information from the two
modalities—something necessary, e.g., to generate
a plausible action for the example in Figure 1.

This ability is certainly necessary for tasks such
as Visual Dialog (Das et al., 2017; Mostafazadeh
et al., 2017) or Visual Storytelling (Huang et al.,
2016; Hong et al., 2023). In the former, multi-
modal models are asked to maintain a meaningful
conversation starting from the contents of an im-
age, which requires more than simply describing
visible aspects. As for the latter, the goal is to
produce a story based on a sequence of images.
Again, this task requires not only understanding
the visual content (which is, however, crucial; see
Surikuchi et al., 2023), but also making inferences
over people’s emotions and feelings, understanding
social dynamics, and so on. These are challeng-
ing tasks for large multimodal models, which were
recently shown to have little social awareness and
struggle with recognizing subtle and culturally di-
verse emotions (Deng et al., 2023). Similarly, these
models face difficulties in handling semantically
underspecified language (where the language signal
needs to be complemented by extra information,
e.g., visual info; see Pezzelle, 2023); moreover,
they have trouble understanding humor (Hessel
et al., 2023), an aspect of multimodal language
use that can only be mastered by going beyond the
literal (i.e., image-aligned) meaning of a sentence.

To explore more complementary scenarios, var-
ious directions have been taken. These include

approaches to Image Captioning that are sensitive
to the context and communicative purpose of the
captions (Kreiss et al., 2021, 2022); tasks that chal-
lenge the models to predict something external to
the multimodal sample, such as the motivation or
intent of a social media post (Kruk et al., 2019), or
the cause or consequence of an event (Hessel et al.,
2022); datasets to test complex inference abilities
in multimodal setups, such as predicting the next ut-
terance or frame in a comic strip (Iyyer et al., 2017).
BD2BB (Pezzelle et al., 2020) also belongs to this
latter category, as it challenges models to predict
what comes next based on both grounded (the im-
age contents) and non-grounded information (the
textual intention). In this work, for the first time,
we study how generative visual language models
deal with complementary multimodal information.

3 Methods

3.1 Data

We use the BD2BB dataset and corresponding
multiple-choice task (Pezzelle et al., 2020). The
task is exemplified in Figure 1: given an image
and a textual intention (If I...), a model must select
the correct action (I will. . . ), i.e., the one that com-
plies with both the visual and textual information.
Note that, in BD2BB (and differently from what
is shown in the figure), each sample comes with
5 candidate options—two that are valid given the
image only (so-called visual decoys), two that are
valid given the intention only (language decoys),
and the correct one. The images in BD2BB come
from a subset of COCO images (Lin et al., 2014) de-
picting at least one person.1 The dataset, collected
via crowdsourcing and further post-processed, in-
cludes around 10K <image, intention, candidate
actions> samples. In this work, we test models in
a zero-shot setup (without training or fine-tuning
them) on the test set, which includes 4081 samples.

3.2 Models

We experiment with four state-of-the-art, open-
source generative VLMs, i.e., MAPL, FROMAGe,
BLIP2, and IDEFICS. As mentioned in Section 2.1,
these models are all based on a similar architec-
ture that leverages two frozen pre-trained unimodal
models (a language and a vision one) and learns
a relatively lightweight mapping network on top
of them. Below, we briefly describe these models

1This choice is meant to increase the likelihood of interact-
ing with these images by performing some action.
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MAPL FROMAGe BLIP-2 IDEFICS
Underlying language model GPT-J OPT OPT / FlanT5 LLaMA
Underlying vision model Vit-L14 Vit-L14 Vit-L14 / Vit-G14 OpenClip5

Mapping network’s architecture Fully connected layers Linear layers Transformer Transformer
# trainable parameters 3.4M 5.5M 188M 1.4B
Generated output Text Text / Image Text Text
COCO images in VLM training? No No Yes No
COCO images in vision model training? No No No No

Table 1: A comparison of the four VLMs used in this work concerning some of their main features.

from smallest to largest in terms of learnable param-
eters. For convenience, we provide an overview
of their most important features in Table 1. We
refer the reader to the original papers for further
details on each model’s architecture, training data,
and optimization strategies.

MAPL (Mañas et al., 2022) builds on
CLIP (Radford et al., 2021) and GPT-J (Wang
and Komatsuzaki, 2021) as a visual and language
frozen model, respectively. The trainable network
to map visual features into token embeddings con-
sists of a few fully connected layers with ReLU
activations (Nair and Hinton, 2010) and dropout
regularization (Srivastava et al., 2014). With only
trainable 3.4M parameters, this network is the light-
est of the four we use in this work.

FROMAGe (Koh et al., 2023) leverages CLIP
Vit-L14 (Radford et al., 2021) and OPT (Zhang
et al., 2022) as its frozen visual and language
model, respectively. The projection of the image
and text representations into a common latent space
is done through several trainable linear layers. This
makes this model lightweight, with only 5.5M train-
able parameters. Among the four models we use,
FROMAGe is the only one capable of producing
outputs including both text and images.

BLIP2 (Li et al., 2023) bootstraps language-and-
vision representations from the underlying frozen
pre-trained unimodal models via a Transformer-
based network. It allows using various underlying
frozen models: CLIP Vit-L14 (Radford et al., 2021)
or Vit-G14 from EVA-CLIP (Fang et al., 2023)
on the vision side; OPT (Zhang et al., 2022) or
FlanT5 (Chung et al., 2022) on the language side
(here, we use the version with FlanT5 and Vit-G).

The multimodal mapping is carried out by a train-
able Querying Transformer (Q-Former) network.
The Q-Former includes two transformer submod-
ules sharing self-attention layers: an image trans-
former interacting with the frozen image encoder

for visual feature extraction, and a language trans-
former serving as both a text encoder and decoder.
It is worth noting that, among the four models here
considered, BLIP-2 is the only one also trained
with images from COCO (Lin et al., 2014), i.e., the
images used to build the BD2BB dataset. Though
the model has not seen the BD2BB data, it could
still have an advantage over other architectures.

IDEFICS (Laurençon et al., 2023) is an
open-access re-implementation of the Flamingo
model (Alayrac et al., 2022) which leverages
LLaMA as the language model (Touvron et al.,
2023) and OpenClip5 (a model pre-trained with a
contrastive text-image approach, similar to CLIP
Radford et al., 2021) as the vision model. Simi-
lar to BLIP-2, IDEFICS uses a Transformer-based
architecture to connect language and vision. In par-
ticular, it employs a Perceiver Resampler module
to map varied-size vision features to a few tokens,
which are then used to condition the frozen LM
through cross-attention layers. We employ the 9B
parameter instructed version with 1.4B trainable pa-
rameters, nearly 10 times more than BLIP-2. This
makes IDEFICS the largest model we consider.

3.3 Experimental Settings
We test the four models in two experiments: a
multiple-choice experiment (Section 4) and an
open-ended generative experiment (Section 5). In
both experiments, we test the pre-trained models
in a zero-shot manner.2 That is, we do not further
train or fine-tune them.3 We ran the models on an
A1000 GPU using their default hyperparameters
to ensure deterministic results. We also conducted

2The pre-trained models can be downloaded from:
https://github.com/octarinesec/MAPL (MAPL)
https://github.com/kohjingyu/fromage (FROMAGe)
https://huggingface.co/docs/transformers/en/
model_doc/blip-2 (BLIP-2)
https://huggingface.co/docs/transformers/en/
model_doc/idefics (IDEFICS)

3Data and code available at: https://github.com/
baiyuyu/VL-complementary-infomation
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the multiple-choice experiment with other hyperpa-
rameter settings (see Appendix A).

4 Multiple-Choice Experiment

We test the four generative models in the original
BD2BB multiple-choice classification task. Here,
together with the intention and the image, we pro-
vide the model with the five candidate actions and
task the model to select the correct one. We evalu-
ate model performance in terms of accuracy, which
we measure both intrinsically and intrinsically. Be-
low, we describe the two evaluations in more detail.

Extrinsic evaluation Given an <image, intention,
actions> sample, we ask the models to provide the
correct action via prompting. Since we present
the candidate actions as options preceded by an
alphabet letter (A-E), models are expected to out-
put the letter corresponding to the action they con-
sider correct. To elicit model responses, we used
the following template, filled with the intention,
the five actions, and a prompt describing the task:
"[intention], [prompt]: A. [action1] B. [action2] C.
[action3] D. [action4] E. [action5]". Given this tem-
plate, we experiment with 30 prompts (provided in
Appendix B) and compute average accuracy and
standard deviation over them. An example of a tem-
plate filled with all information for one dataset’s
sample is the following (we give the prompt in
italic): "If I feel adventurous, what should I do?
Choose the best option from the following: A. I will
ride an elephant. B. I will merely watch my friend
fly an animal kite. C. I will go bird watching on
an outdoor public patio. D. I will ride a horse like
the man. E. I will stand and observe the zebras."
Such experimental setup assumes that each of the
four models can provide answers in the form of a
single letter. However, in practice, the raw outputs
often contained additional text that required some
post-processing to extract the relevant letter. For
instance, the IDEFICS model generated responses
structured as "Question: . . . Assistant: E". For
those cases, we employed a cleaning step based on
hard-coded rules to remove the surrounding text,
ensuring only the answer ("E") was retained.

Intrinsic evaluation Given an <image, intention,
actions> sample, we consider its 5 <intention, ac-
tion> pairs and compute the cross-entropy loss be-
tween each of these sequences (we concatenate the
intention and the action) and the image. To do so,
we first obtain the logits from the model’s final

Model Accuracy
intrinsic extrinsic

LXMERT* 62.2
CLIP 53.2
MAPL 63.1 22.0±0.8
FROMAGe 47.9 20.0±0.5
BLIP-2 42.0 75.7±0.8
IDEFICS 63.7 35.5±7.2
Humans* 79.0

Table 2: Multiple-choice experiment. Intrinsic and ex-
trinsic model accuracy. Numbers in bold are the highest
in the column. *Results from Pezzelle et al. (2020).

hidden layer for the current input sequence. Then,
we calculate the cross-entropy loss between these
logits and the target tokens. The total cross-entropy
loss for a sequence is the sum of the losses at each
word position. The sequence with the lowest cross-
entropy loss is selected as the model answer. These
predictions are used to compute model accuracy.

4.1 Results

In Table 2, we report the extrinsic and intrinsic
accuracy of each tested model. We compare our
results with those by humans and the pre-trained
LXMERT (Tan and Bansal, 2019) (best-performing
in Pezzelle et al., 2020), as they are given in the
BD2BB paper. As an additional baseline, we report
the results by CLIP (Radford et al., 2021), which
we obtain by computing the CLIPScore (Hessel
et al., 2021) (quantifying the plain degree of align-
ment between the visual and textual inputs) be-
tween the image and each of the <intention, action>
pairs, fed to the model as a sequence. By looking
at the numbers in the table, we identify a few key
findings, that we summarize below.

BLIP-2 approaches human performance in the
extrinsic evaluation The first key finding of our
experiment concerns the performance of BLIP-2
in the extrinsic evaluation: the model achieves an
average accuracy of 75.7%, i.e., only 3 accuracy
points far from human performance. This means
that, for more than 3 samples out of 4, the model
identifies the correct action for a given <image,
intention> pair. This result is even more remark-
able considering that the other three models do
not fare much better than chance in this evalua-
tion setting. As mentioned in Section 3.2, BLIP-
2 is the only model trained with COCO images
(though, crucially, none of the tested models, in-
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Figure 2: Multiple-choice experiment. Distribution of
correct and wrong answers by BLIP-2 (top) and FRO-
MAGe (bottom) against their position (A-E) in the tem-
plate. While BLIP-2 has only a minor bias toward first-
position answers, FROMAGe is heavily biased.

cluding BLIP-2, have ever seen the BD2BB data).
Moreover, BLIP-2 is the only one leveraging a
language model, FlanT5, which was instruction-
finetuned on a mixture of tasks. Therefore, it is
reasonable to hypothesize both these aspects could
give an advantage to BLIP-2 over the other models.
We leave to future work an extensive exploration of
this issue, which is outside the scope of this work.

Some VLMs are biased towards early-presented
options Upon manual inspection of the model-
generated outputs in the extrinsic evaluation, we
noticed a bias of MAPL, FROMAGe, and IDEFICS
toward predicting the actions presented earlier in
the template; that is, these models appeared to pre-
fer A over E. To quantify this effect, we calcu-
lated, for each model, the percentage of predicted
responses based on their position. In Figure 2, we
visualize the results for FROMAGe (MAPL and
IDEFICS exhibit a very similar pattern), which we
plot against the behavior of BLIP-2. As can be
seen, FROMAGe is heavily biased toward the first
positions/letters in the template, while BLIP-2 is
not, or to a much lesser extent. This striking differ-
ence highlights that, while BLIP-2 can treat each
action in the template (almost) equally, this is not
the case for the other models. This is likely one of
the reasons for the success of this model.

BLIP-2 Humans*
multimodal 75.7±0.8 79.0
language-only 59.1±0.4 50.0
vision-only 57.0±2.5 72.3

Table 3: BLIP-2 and human accuracy in three settings:
multimodal, language-only, and vision-only, evaluated
extrinsically. *From Pezzelle et al. (2020).

VLMs do not overtly outperform LXMERT in
the intrinsic evaluation When evaluated intrinsi-
cally on the task, generative VLMs do not exhibit a
generalized advantage over the previous-generation
models. While MAPL and IDEFICS do perform
slightly better than LXMERT (see Table 2), this
is not the case for FROMAGe and BLIP-2 (note,
though, that in an additional experiment, we found
that BLIP-2 with underlying OPT achieves better
accuracy: 62.4%). This suggests that generative
VLMs may not, by default, be necessarily better
encoders than previous models, in line with what
was discussed by BehnamGhader et al. (2024) for
text-only LMs. At the same time, all VLMs except
FROMAGe outperform CLIP, which reveals that
the cross-modal scores we obtain from them encode
more than simple image-text alignment, which is
all that CLIP captures. This provides indirect proof
that VLMs can, to some extent, combine comple-
mentary information from the two modalities.

4.2 Is BLIP-2 Using the Multimodal Context?
As discussed above, BLIP-2 achieves near-human
accuracy in the multiple-choice experiment when
evaluated extrinsically. In this analysis, we explore
whether this performance is due to genuine integra-
tion of language and vision or biases and shortcuts
exploited in one of the two modalities. To do so,
we run the same experiment in two additional set-
tings: (1) a language-only one, where we provide
the model with the intention and the actions, but
not the image; (2) a vision-only one, where we pro-
vide the model with the image and the actions, but
not the intention (see the prompts in Appendix C).
If the model genuinely leverages the two modali-
ties, it should perform worse in both these settings
than the multimodal one, where both the image and
the intention are given as input. The results of this
analysis are presented in Table 3.

As can be seen, the model fed with the mul-
timodal input neatly outperforms both unimodal
settings. This reveals that jointly leveraging infor-
mation conveyed by the image and the intention is
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beneficial to solving the task, a pattern that is also
observed in human behavior. Compared to humans,
however, BLIP-2 exhibits a slight advantage in the
language-only setting and a large disadvantage in
the vision-only setting. This pattern suggests, on
the one hand, that the underlying FlanT5 language
model might be driven by some biases and default
choices when performing the inference task; on the
other hand, its image processor is less capable than
humans to understand the subtleties of a scene and
which actions it pragmatically licenses.

In Appendix D, we present the results of an ad-
ditional analysis that further investigates whether,
and when, the model leverages complementary in-
formation or simply counts on a single modality.

5 Open-Ended Generative Experiment

In the multiple-choice experiment, only BLIP-2,
but none of the other models, is extrinsically good.
At the same time, most VLMs can assign a higher
probability to the correct action in many cases. This
discrepancy is likely due more to how the different
models have been trained and designed than to
what the models do or do not know. Moreover,
we acknowledge that a multiple-choice scenario is
not the most naturalistic way to interrogate these
models. To overcome these issues, in the second
experiment, we feed the VLMs with the image and
the intention and let them generate an open-ended
continuation. This is a more straightforward way
to assess the models, but it poses challenges on
the evaluation side. Below, we describe the two
methods we use to evaluate model performance.

Reference-based evaluation In this evaluation,
we take the continuation generated by a model and
compare it to each of the five candidate actions in
the sample. We make the simplistic assumption
that, if the generated action is good, it should be
more similar to the correct action than the decoy
actions. This assumption allows us to compute
model accuracy: we consider the model correct
every time the similarity between the generated
and correct actions is the highest in the batch.

Intuitively, the choice of the prompt to use to
elicit a continuation from a model plays a big role.
Indeed, we noticed that some prompts may be ef-
fective for some models, but not for others. After a
careful, manual exploration of prompts, we focused
on four that appeared to be good-performing across
models. We provide further details about this ex-
ploration and the actual prompts in Appendix C.

Model Accuracy
MAPL 32.9±8.7
FROMAGe 32.7±4.8
BLIP-2 49.5±2.6
IDEFICS 31.5±10.9

Table 4: Open-ended generative experiment. Reference-
based accuracy is computed using BERTScore similar-
ity. Average and std. over results for 4 different prompts.

To compute similarities, we used various com-
mon NLG metrics, including BLEU4 (Papineni
et al., 2002), ROUGE (Lin, 2004), CIDER (Vedan-
tam et al., 2015), Meteor (Banerjee and Lavie,
2005), and the more recent BERTScore (Zhang
et al., 2019). While the scores by various metrics
can be different, we observed that various metrics
led to similar patterns. Therefore, from now on, we
only focus on BERTScore and refer the reader to
Appendix E for further details on other metrics.

Reference-free evaluation Evaluating model
outputs using automatic, reference-based metrics is
simplistic as it assumes that only an action that is
similar to the target one is a good one. To evaluate
the plausibility of the actions in a reference-free
manner, we therefore carried out a human evalua-
tion. We sampled 50 <image, intention, generated
action> datapoints per model and presented them,
one at a time, to six participants.4 We asked them
to judge whether the second part of the sentence
(displayed in bold), i.e., the generated action, was
a plausible continuation of the first part, i.e., the
ground-truth intention, based on the contents of
the image. As the question was binary, they could
choose between the options Yes or No. To ensure
the quality of human annotations, we added 20
clear-cut cases to the data (10 correct, 10 wrong),
that we used as a control group. All participants
achieved high accuracy (≥ 75%) on these control
samples. In total, each participant assessed 220
samples (200 model-generated + 20 control ones).

5.1 Results

Table 4 and Figure 3 report, respectively, the results
of the reference-based and reference-free evalua-
tion. Below, we summarize the main findings.

4Participants were recruited among colleagues at our insti-
tution and carried out the annotation voluntarily. They were
informed about the use of the annotations they provided and
agreed to their use through informed consent.
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Figure 3: Open-ended generative experiment.
Reference-free accuracy is based on human judgments,
300 per model (i.e., one per assessed sample).

BLIP2 is the best-performing model accord-
ing to both evaluations Based on the results of
both evaluations, BLIP-2 appears to be the best-
performing model in this experiment. Indeed, this
model achieves the highest average reference-based
accuracy (49.5%) across the board, outperforming
the other models by nearly 20 accuracy points. As
for the reference-free evaluation, human partici-
pants judge BLIP-2’s generated actions as plau-
sible in 77% cases. This is a remarkably higher
accuracy than the one obtained by the other mod-
els, whose accuracy ranges between 40 and 45%.
These results confirm the superiority of BLIP-2
in generating actions consistent with both a visual
context and a non-grounded textual intention.

BLIP-2’s abilities can also be appreciated by
looking at cases where it generates actions that are
judged implausible by human annotators, as the
one in Figure 4. Here, given the intention If I want
to socialize, the model generates a good action,
which is also consistent with the scene content—a

If I want to socialize. . .

If I want to . . .

Ground-truth
I will play the
Wii with my
friends

BLIP-2
I will play pool
with the guys ✗

Figure 4: An example of an action generated by BLIP-2.
In this case, the human annotators considered this action
implausible given the intention and the image.

pool in the foreground and several people standing
around it. However, in this case, this action is prag-
matically implausible, as the people in the image
are busy playing video games. From this single
example, it appears that the strengths of BLIP-2 lie
in its ability to understand the scene, the intention,
and their complex interaction. On the other hand,
there is room for improvement in understanding the
dynamics of events and relationships between peo-
ple conveyed by an image. Improving this aspect
can be a good direction to develop semantically
valid and pragmatically plausible models.

Other models perform similarly (poorly) As
for MAPL, IDEFICS, and FROMAGe, it can be
noted that their performance is similar according to
both evaluations. This is interesting as the models
build on different language and vision models, have
varying sizes, and are trained with different data.
Once again, this observation seems to reiterate the
peculiarity of BLIP-2 compared to other architec-
tures, from which it differs by the instruction-tuned
LM and the presence of COCO in the training data.

6 Conclusion

In this work, we focused on the problem of com-
bining complementary information brought to a
context by language and vision. We used a bench-
mark proposed for previous-generation multimodal
models, i.e., language-and-vision encoders based
on the Masked Language Modeling objective, and
tested, for the first time, how state-of-the-art gen-
erative visual language models deal with it. We
presented a set of innovative analytical methods
designed to assess the ability of multimodal gener-
ative models to integrate complementary informa-
tion effectively. Through both multiple-choice eval-
uations and open-ended generative experiments,
our approach offers a novel perspective on the chal-
lenges and capabilities of these models in achieving
true multimodal integration. In our experiments,
we found that the BLIP-2 performs consistently
and significantly better than competing models.
While most generative VLMs struggle, this model
achieves both near-human accuracy in the multiple-
choice experiment and high human judgments in
the open-ended generative experiment. This reveals
the superiority of this model on the task, likely due
to instruction finetuning and having seen COCO
images in training. These two ingredients appear
to be key for the model, which exhibits a deep un-
derstanding of the image, the textual intention, and
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the complex interaction between them. Based on
these findings, we conjecture that this recipe—and,
particularly, instruction finetuning—may help mod-
els develop better generalized semantic and prag-
matic abilities. These skills are crucial to language-
mediated communication; future work might ex-
tend our investigation to other scenarios, includ-
ing more naturalistic ones. Similarly, future work
should focus on a comprehensive evaluation of the
impact of seeing the same images encountered dur-
ing training. While the BD2BB task here explored
is a different one than plain image captioning, this
aspect surely deserves further attention.

We argue that future work should focus on build-
ing more datasets and resources that encompass
complex interactions between image content and
its accompanying text. This implies taking a more
communicative perspective on the study of lan-
guage in multimodal contexts, which is what is
needed to develop linguistic technologies ready to
communicate seamlessly with human users.

Limitations

Our investigation is limited to one (English) dataset
and a handful of models. This narrows the scope of
the findings we presented. While our approach can
be easily applied to other resources, languages, and
models, we acknowledge that the claims made in
this paper may not necessarily generalize. Another
limitation is the choice of prompts used to elicit
the responses from the models. There is growing
evidence of the significant role of prompt word-
ing on model generation, that we fully recognize.
Although we believe we conducted a fairly compre-
hensive prompt search, our results can only speak
for the prompts we used. Furthermore, the human
evaluation we conducted is arguably small-scale as
it involves few participants and a relatively small
number of samples. We cannot fully exclude that
the reported patterns may not replicate when in-
creasing the number of participants and stimuli.
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A Different Parameter Combinations for
Multiple-Choice Experiment

We tested each model’s most promising prompt
with 4 different parameter combinations. The re-
sults are shown in table 5.

- FROMAGe BLIP2 IDEFICS
Default parameter 20.5 77.1 42.1
Temp = 0.8,topp = 0.8 19.7 75.9 33.1
Temp = 0.8,topp = 0.9 17.8 74.3 30.0
Temp = 0.8,topp = 0.8 17.7 75.2 30.5
Temp = 0.8,topp = 0.8 17.7 73.5 28.3

Table 5: The results for 3 generative models in discrimi-
native setting across different parameter combinations

B 30 Prompts for Multipul-Choice
Experiment

1. What am I supposed to do <intention>? <can-
didate actions>

2. What am I supposed to do <intention>? Pick
the best option from the following ones: <can-
didate actions>

3. Question: What am I supposed to do <inten-
tion>? Pick the best option from the following
ones: <candidate actions> Answer:

4. Given this visual context, what am I supposed
to do <intention>? Pick the best option from
the following ones: <candidate actions>

5. What am I supposed to do given this visual
context, <intention>? Pick the best option
from the following ones: <candidate actions>

6. Suppose I am faced with this situation. What
am I supposed to do <intention>? Pick the
best option from the following ones: <candi-
date actions>

7. What action will I perform <intention>? Pick
the best option from the following ones: <can-
didate actions>

8. Suppose I am faced with this situation. What
actions should I perform <intention>? Pick
the best option from the following ones: <can-
didate actions>

9. Imagine I am in this visual scenario. What
action should I perform <intention>? Pick the
best option from the following ones: <candi-
date actions>

10. What actions should I perform <intention>?
Considering both my feeling and the image,
pick the best option from the following ones:
<candidate actions>

11. Considering both my feeling and the image,
what will I do <intention>? Pick the best op-
tion from the following ones: <candidate ac-
tions>

12. What will I do <intention>? Pick the best
option from the following ones: <candidate
actions>

13. <intention>, what’s the best step to take? Se-
lect the optimal choice from the options pro-
vided.<candidate actions>

14. <intention>, what’s the most suitable action
to choose? Select the best option from the
following list.<candidate actions>

15. <intention>, what’s the recommended action
to perform? Choose the best option from the
following ones.<candidate actions>

16. Which action is most advisable <intention>?
Choose from the following options. <candi-
date actions>

17. What’s the best step to follow <intention>?
Pick from the following options. <candidate
actions>

18. <intention>, what’s the most appropriate deci-
sion to make? Select the right choice from the
options provided. <candidate actions>

19. What’s the recommended response <inten-
tion>? Choose from the following options.
<candidate actions>

20. What should I do <intention>? Choose from
the following options considering both my
feeling and the image.<candidate actions>

21. Taking into account both my feeling and the
image, what’s the recommended step to take
<intention>? Pick from the following options.
<candidate actions>

22. Considering equally the image and my feel-
ing, what should be my action <intention>?
Choose the right action from the following
list.<candidate actions>
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23. With both the image and my feeling in mind,
how should I react <intention>? Select the
best choice from the following options. <can-
didate actions>

24. With both the image and my feeling in mind,
what action is most advisable <intention>?
Choose from the following options. <candi-
date actions>

25. When taking both the image and my feeling
into consideration, what’s the best step to fol-
low <intention>? Pick from the following
options.

26. <intention>. <candidate actions>

27. <intention>, what happens next? <candidate
actions>

28. <intention>, what will I do? <candidate ac-
tions>

29. What will I do <intention>? <candidate ac-
tions>

30. How should I behave <intention>? <candidate
actions>

C 4 Prompts For Open-Ended Generative
Experiment

1. What am I supposed to do <intention>? I
will. . .

2. <intention>, what will I do? I will. . .

3. What should I do <intention>? I will. . .

4. What action will I perform <intention>? I
will. . .

For this open-ended generative experiment, it is
important to note that the optimal prompt may vary
for each model. For instance, the prompt "What am
I supposed to do + [intention]+? " can yield results
for BLIP2 but did not work well for the MAPL and
FROMAGe models. For the MAPL model, "Ques-
tion:... Answer:", and for the FROMAGe model,
"Q:... \nA: " are the template prompts provided by
the model developer. Additionally, adding "I will"
at the end of the prompt is proved to be effective
for both models. After a careful manual inspection
of several prompts and their outputs, we focused
on the 4 most promising ones as in this appendix.

Actions generated using these prompts also need
to be further processed to ensure they conform to

the same format as the target action and other op-
tional actions. For example, IDEFICS consistently
generates sentences prefixed with "Assistant:". To
calculate the similarity score of these answers with
other actions, it is necessary to remove the "Assis-
tant:" prefix and retain only the main action, which
typically begins with a verb.

D Error Analysis

We performed an error analysis aiming to compare
the outputs of the three versions of BLIP2: multi-
modal, language-only, and vision-only. By doing
so, we aimed to gain insights into how, and when,
BLIP2 effectively leveraged information from lan-
guage and vision to achieve better performance in
the task. We observed that, in 1,350 cases (33%),
all three model versions provided a true prediction.
In such cases, the model could make a correct as-
sessment by relying only on one single modality,
which suggests that, in these cases, the information
conveyed by the multimodal input may be redun-
dant.

In 221 cases (around 5%), only the multimodal
BLIP2 could correctly predict the right answer,
while no unimodal model versions could. In these
cases, BLIP2 genuinely leveraged complementary
information from the two modalities, which was
necessary but not sufficient on their own to perform
the task.

The entire test dataset, comprising 4,081 sam-
ples, was categorized into eight different groups
based on the consensus of model predictions under
three conditions. The categories are as follows:

• TTT: The model correctly produces the an-
swer in LV, L, and V.

• TTF: The model correctly produces the an-
swer in LV, L, but not in V.

• ...and so on for the remaining categories.

For each category, a manual inspection of 100
cases was conducted to identify the sources of er-
rors in the models. The results of this analysis are
summarized in Table 6.

This error analysis table reveals a wealth of in-
formation. The second and third rows of the table
indicate that when there is correct information in
one modality, the multimodal model knows how
to utilize it effectively. Furthermore, the examples
in the fourth row demonstrate that these cases can
only be predicted correctly using complementary
information.
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Is the prediction
correct? Number of Cases Percentage Comments

BLIP_LV: T
BLIP_V: T
BLIP_L: T

1350 0.3308

No errors were found in these
cases, indicating that they may
be too easy for the multimodality
model to handle.

BLIP_LV: T
BLIP_V: T
BLIP_L: F

581 0.1424
The model in the L setting gave
incorrect predictions due to the
absence of image information.

BLIP_LV: T
BLIP_V: F
BLIP_L: T

808 0.1980
The model in the V setting gave
incorrect predictions due to the
absence of intention information.

BLIP_LV: T
BLIP_V: F
BLIP_L: F

222 0.0544
Only multimodality setting can
give true predictions.

BLIP_LV: F
BLIP_V: T
BLIP_L: T

11 0.0027
The model’s incorrect predictions
can be attributed to the following
reasons:
1. Problematic/borderline cases;
2. Wrong object detection;
3. Failure to understand the
intention;
4.Only considering one modality;

BLIP_LV: F
BLIP_V: T
BLIP_L: F

221 0.0542

BLIP_LV: F
BLIP_V: F
BLIP_L: T

117 0.0287

BLIP_LV: F
BLIP_V: F
BLIP_L: F

771 0.1889

Table 6: Error Analysis Table: Each row provides information on some specific cases, indicating whether the BLIP2
model can produce a correct prediction under three different conditions and the potential reasons for such results.

E Exploring Different Metrics for
Similarity Measurement

We tested different metrics to conduct the
Reference-based evaluation for the open-ended gen-
erative experiment. We tested in three settings:
multimodal, language-only, and vision-only. The
result are reported in Table 7.

F Degree of Visual Grounding

In our previous analysis, we evaluated the BLIP2
model’s performance in the BD2BB task by exam-
ining the accuracy of the generated actions. How-
ever, accuracy alone does not fully capture the
model’s ability to utilize the information from two
modalities. Therefore, we can also evaluate the
model from a different perspective by considering
its ability to incorporate information only from the
image. We assumed that if the model successfully
utilizes the image information, it will explicitly
mention objects from the image in the generated
actions. This indicates that the action is grounded
in the visual content.

Thanks to the labeling of golden nouns in the

image data, we can easily determine whether the
generated action mentions any objects from the
image. Based on how many actions are grounded in
the visual content, we can calculate the grounding
rate by following the formula:

grounding_rate =
Ngrounded

Ntotal
(1)

We calculated the grounding rate for generated
actions using 15 manually selected prompts. These
prompts were carefully crafted to vary in their fo-
cus: some directed the model’s attention toward
language aspects, others toward visual elements,
and some involved variations in linguistic forms.
The prompts we use are shown in Table 8. The
grounding rate varied across different prompts. In-
terestingly, we found that by changing the prompt,
we could easily influence the grounding rate while
accuracy remain stable. Although we cannot sup-
press a modality by altering the prompt (prompt 6),
we can effectively focus selectively on one modal-
ity by being explicit (prompts 7, 8, 9, and 14).
Figure 5 is the bar plot about both accuracy and
grounding rate. The pink bar represents the accu-
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Setting BERTScore BLEU-4 CIDER METEOR ROUGE
LV 0.53 0.54 0.52 0.48 0.51
L 0.39 0.49 0.38 0.29 0.36
V 0.42 0.37 0.41 0.38 0.4

Table 7: Results for BLIP2 in three different settings using different metrics.
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Accuracy vs Grounding rate for each prompt
Accuracy
Grounded rate

Figure 5: A bar plot illustrates the accuracy and ground-
ing rate across different prompts. Accuracy increases
from left to right. The bar with the highest grounding
rate corresponds to Prompt 8: "Suppose I am in this
specific visual context. What actions should I take [in-
tention]? Please mention at least one object from the
image." The bar with the lowest grounding rate corre-
sponds to Prompt 2: "Q: What am I supposed to do
[intention]? A:" This variation highlights the impact of
prompt design on model performance.

racy of different prompts in an ascending order. It
is shown that the grounding rate does not always
align with the accuracy.

By introducing the grounding rate as an evalua-
tion metric, we provide an additional perspective
to assess the performance of multimodal models.
It highlights the model’s ability to ground its gener-
ated actions in visual information, offering insights
beyond accuracy alone (Surikuchi et al., 2023).
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Prompt Accuracy Grounding rate
prompt1 Question: What am I supposed to do + [intention]? Answer: 52.66 53.10
prompt2 Q: What am I supposed to do + [intention]? \nA: 52.34 51.58
prompt3 What am I supposed to do + [intention]? 53.20 58.25
prompt4 What am I supposed to do + [intention]+? I will 52.63 63.44
prompt5 What am I supposed to do + [intention]+? Answer in the format ”I will” 54.57 55.67
prompt6 What am I supposed to do + [intention]+? Please provide an answer based

solely on the intention, without considering the image.
53.08 56.82

prompt7 What action should I take +[intention]+? Please base your response solely
on the image. Additionally, kindly mention at least one object visible in
the image.

53.32 75.97

prompt8 Suppose I am in this specific visual context. What actions should I take+
[intention]+? Please mention at least one object from the image.

54.76 76.06

prompt9 Imagine I am in the given visual scenario. What actions should I take regarding
+[intention]+’? Please mention at least one object from the image.

54.06 75.74

prompt10 Imagine yourself in this specific visual context. Considering both the
intention and the image, what actions should be taken +[intention]+?

54.06 67.78

prompt11 Considering both the intention and the image, what will you do +[intention]+? 55.16 68.41
prompt12 What will I do +[intention]+? 54.47 61.67
prompt13 What will you do +[intention]+? I will 54.37 62.23
prompt14 What will you do +[intention]+? Please give a plausible reason by mentioning

at least one object from the image.
53.96 75.89

Table 8: The accuracy and grounding rate across different variations of the prompts.
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Abstract

Multimodal generative AI usually involves gen-
erating image or text responses given inputs in
another modality. The evaluation of image-text
relevancy is essential for measuring response
quality or ranking candidate responses. In par-
ticular, binary relevancy evaluation, i.e., “Rel-
evant” vs. “Not Relevant”, is a fundamental
problem. However, this is a challenging task
considering that texts have diverse formats and
the definition of relevancy varies in different
scenarios. We find that Multimodal Large Lan-
guage Models (MLLMs) are an ideal choice
to build such evaluators, as they can flexibly
handle complex text formats and take in ad-
ditional task information. In this paper, we
present LLaVA-RE, a first attempt for binary
image-text relevancy evaluation with MLLM.
It follows the LLaVA architecture and adopts
detailed task instructions and multimodal in-
context samples. In addition, we propose a
novel binary relevancy data set that covers var-
ious tasks. Experimental results validate the
effectiveness of our framework.

1 Introduction

Multimodal generative AI such as GPT-
4V (Achiam et al., 2023), Gemini (Team
et al., 2023), and Stable Diffusion (Rombach et al.,
2022) has shown remarkable ability to generate
image or text responses. A typical scenario is
an AI assistant where agent responses to user
instructions during a conversation. For example,
user inputs a textual query, and agent returns an
image that is generated or retrieved from some
database. To measure response quality or rank
candidate responses, an essential component is
evaluating the relevancy between text and image.
However, this is not an easy task. The texts can
have diverse formats such as a long description, a
multi-turn conversation, or a structured document

*Work done during internship at Amazon.

digest. Such complex texts usually contain rich
information, and the definition of relevancy varies
in different scenarios. It requires to specify
attributes that lead to a ‘relevant’ image. For
example, a multi-turn conversation and an image
may talk about the same product but have some
controversial details, such as color or size; when
describing fine-grained bird species, one image
can match common attributes of the bird genus but
not specie-wise details. In both cases, the image
can be labeled either as ‘relevant’ or ‘not relevant’,
depending on the particular goal. Traditional
retrieval models (Frome et al., 2013; Lee et al.,
2018; Qu et al., 2021) rely on image and text
embeddings. They are not suitable for this complex
evaluation task with long texts. Methods like
CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022) fall apart for long and ambiguous texts.

These challenges motivate us to build an effec-
tive relevancy evaluation model for complex image-
text pairs. We focus on binary image-text relevancy,
i.e., “Relevant” vs. “Not Relevant”. Although it is
possible to add intermediate relevancy labels such
as “Somewhat Relevant”, binary relevance labels
are more common in practical usage and it enforces
evaluators to make less ambiguous labeling.

Multimodal Large Langauge Models (MLLMs)
such as LLaVA (Liu et al., 2024c) are an ideal
choice for the above-mentioned purposes. Com-
pared with traditional models that rely on similarity
scores between image and text embeddings (Wang
et al., 2018), MLLMs exhibit much more flexibil-
ity. As MLLMs are pre-trained on huge image-text
corpus, they can easily handle diverse text formats.
Besides, additional task information such as the rel-
evancy definition or demonstration examples can
be readily integrated into model inputs. However,
even with contextual information, a direct exten-
sion of state-of-the-art MLLMs does not perform
effectively on relevancy tasks.

In this paper, we present Large Language and
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Vision Assistant for binary image-text Relevancy
Evaluation (LLaVA-RE), a first attempt for rele-
vancy evaluation with MLLM. Our model builds
upon the LLaVA 1.5 architecture (Liu et al., 2024a),
which shows excellent performances among open-
sourced MLLMs and can be easily extended owing
to its light-weight design. To handle ambiguity
in relevancy, we adopt detailed task instructions.
Furthermore, we leverage multimodal in-context-
learning (Doveh et al., 2024) to include few-shot
demonstration examples. These designs empower
LLaVA-RE to generalize to unseen relevancy tasks
and achieve more accurate predictions. Since there
are no publicly available datasets focusing on com-
plex image-text relevancy, we propose a novel bi-
nary relevancy dataset covering diverse tasks. For
each task, a strategy to sample positive and neg-
ative image-text pairs is delicately designed. We
train our model on the curated datasets and evaluate
on unseen and fine-grained relevancy tasks.

We summarize the contributions as follows:
• To the best of our knowledge, LLaVA-RE

is the first work to build MLLM for binary
image-text relevancy evaluation.

• We create a novel binary relevancy dataset
covering diverse tasks, where positive and neg-
ative image-text pairs are delicately sampled.

• Experimental results validate the effectiveness
of our framework over the vanilla LLaVA 1.5
by incorporating novel designs of task instruc-
tions and multimodal in-context learning.

2 Related Work

Image-Text Retrieval is a common task that re-
trieves the most related image or text giving the
counterpart (Cao et al., 2022). Traditional meth-
ods (Frome et al., 2013; Lee et al., 2018; Qu et al.,
2021) built visual semantic embeddings and model
dense cross-modal interactions to get similarity
scores. CLIP (Radford et al., 2021) is a pioneer-
ing work that aligns image and text modalities via
contrastive learning on abundant imaga-text pairs.
This is later improved with bootstrapping (Li et al.,
2022) and Query Transformer (Li et al., 2023b).
InternVL (Chen et al., 2024) scaled up the vision
foundation model and progressively aligns it with
LLM. Although these works aim to match image
and text, their texts are often short image captions.
In contrast, we tackle relevancy evaluation tasks
that involve significantly longer texts, greater am-
biguity, and more complex formats.

MLLM and Binary VQA. Recently, numerous
MLLM models have been introduced (Achiam
et al., 2023; Laurençon et al., 2024), with the
LLaVA family (Liu et al., 2024c) being the most
closely related to our work. LLaVA model con-
nected a pretrained vision encoder and an LLM
with a linear layer, and trains on visual instruction-
following data generated by GPT-4. LLaVA 1.5
enhances performance with an MLP projector and
academic-task VQA datasets (Liu et al., 2024a),
while Liu et al. (2024b) introduce dynamic image
resolution and stronger LLM backbones. MLLM
models achieve impressive performances on di-
verse Visual Question Answering (VQA) tasks, and
binary VQA that has a “yes/no” answer is an impor-
tant subset. However, these existing binary VQA
questions hae simple forms and it is unclear how
MLLMs generalize to the challenging text-image
relevancy tasks studied in this paper.

Multimodal In-Context-Learning utilizes mul-
timodal context to improve model inference. Li
et al. (2023a) construct an interleaved multi-modal
ICL dataset and train a Flamingo-based model to
demonstrate ICL capability. Zhao et al. (2023) in-
troduce a novel context scheme that incorporates an
additional image declaration section and includes
image proxy tokens to enhance model’s ICL abil-
ity. Doveh et al. (2024) extend LLaVA with ICL
capability by tuning on few-shot instruction data.
Despite these innovations, the effectiveness to in-
corporate ICL in binary relevancy tasks is under-
explored. Our work finds current multimodal ICL
solutions struggling to adapt effectively to this spe-
cific relevancy evaluation task.

3 Approach

3.1 Binary Relevancy Evaluation Formulation
Given a pair of image I and text T , we want to
evaluate whether they are relevant or not. Formally,
a relevancy evaluator M maps (I, T ) into a binary
label r ∈ {“Relevant”, “Not Relevant”}. Usu-
ally, this is not a well-defined task as the meaning
of relevancy depends on specific scenarios. We as-
sume that there exists an additional task instruction
S, which is a paragraph of natural language describ-
ing the data and clarifying the relevancy definition.
Meanwhile, there could be a few demonstration
examples {(Ii, Ti, ri)} from the same task. Binary
relevancy evaluation can be formulated as follows:

r = M(I, T ;S, {(Ii, Ti, ri)}) (1)
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Figure 1: Framework of LLaVA-RE model. We use ViT and Vicuna as the image and text encoder, respectively.
Context samples are selected from the same relevancy evaluation task.

Task Train Test Text format

llava 10k 6k Conversations
wiki 20k 300 Plain paragraph
recipe 12k 1k Ingredients description
textvqa 33k 1k Question, answer, reasoning
tdiuc 7k 300 Question, answer, reasoning
chartqa – 1k Question, answer, reasoning
infographics – 1k Question, answer, reasoning
fine-grained – 6k Category description

Table 1: List of created binary relevancy datasets.

3.2 LLaVA-RE
In this paper, we present Large Language and
Vision Assistant for binary image-text Relevancy
Evaluation (LLaVA-RE). It is built upon the
LLaVA 1.5 architecture (Liu et al., 2024a), which
uses a conversation data format and can readily
integrate task instructions and demonstration text-
image examples. One data sample is as follows:

Human : S

Human : I1, T1 Assistant : r1

...

Human : IC , TC Assistant : rC

Human : I, T Assistant : r

(2)

where C is the number of demonstration examples.
The model training includes two stages: first, we

train the image projector using the same method-
ology as LLaVA 1.5 (Liu et al., 2024a); second,
we train the language backbone with multimodal
ICL instruction tuning (Doveh et al., 2024) using
binary relevancy data. To increase diversity during
training, random task instructions are generated
with Claude 3 Sonnet based on hand-crafted tem-
plates. The demonstration examples are sampled

Collect images and texts from public sources

Extract or generate detailed texts 

Create negative image-text pair if not exist

Write task instruction by hand and use Claude to generate more

Convert data into LLaVA multi-turn conversation format

Figure 2: Data creation pipeline.

from training data of the same relevancy task. The
task instruction together with demonstration exam-
ples form the prompt input for MLLMs. It can vary
across different samples.

3.3 Binary Relevancy Data Creation

As there are no available complex binary relevancy
datasets for training and evaluation, we create data
from diverse public datasets listed in Tab. 1. These
are for preliminary experiments and we plan to
expand them in a future work. The datasets will be
released upon approval.

The data creation pipeline consists of 5 stages,
as shown in Fig. 2. We first collect public data
with image and text correspondences. As we fo-
cus on texts with complex formats and rich details,
we select VQA datasets whose questions require
some reasoning, and structured data like Wikipedia
pages. Having more diverse data sources would
certainly be helpful. The images are ready to use,
while texts need additional processing. We extract
related texts from the raw data, and format them
with predefined templates. For short texts, we use
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Figure 3: Evaluation results on training and unseen tasks. (hohold-out test data, †unseen test tasks)

Claude 3 Sonnet to generate detailed reasoning
words or descriptions. After that, a key step is to
define positive and negative image-text pairs. Posi-
tive pairs are easy to obtain as they can be derived
from the raw data correspondences, while negative
pairs may not exist. We create negative pairs by
sampling images (or texts) from the same category.
The specific strategies depend on the datasets. It
is worth mentioning that defining proper negative
pairs is a challenging task, as there are no human
annotations. If using more strict rules (e.g., higher
similarity score thresholds), some relevant image-
text pairs may be mislabeled as ‘hard’ negative
samples. Finally, we use Claude 3 Sonnet to gen-
erate task instructions for each dataset and convert
data into LLaVA multi-turn conversation format.
Due to page length limit, more details can be found
in Sec. A.1.

3.4 Framework

The framework of LLaVA-RE model is plotted in
Fig. 1. Given a pair of image and text, and a task
instruction, we use ViT model (Dosovitskiy, 2021)
to extract image tokens. The text and instruction
are transformed using a default tokenizor. An MLP
module maps original image tokens into text space.
In addition, there are several context samples tok-
enized in the same way. The Vicuna model (Chiang
et al., 2023) takes the entire token sequence and
predicts a binary relevancy label.

4 Experiments

4.1 Setup

Model Settings. Following LLaVA 1.5, we use
CLIP-Large of 336×336 image resolution as vi-

sion encoder and Vicuna as LLM backbone. We
experiment with both 7B and 13B Vicuna models.

Training Details. We use the same pretraining
setting as LLaVA 1.5 to learn the image projec-
tor. During instruction tuning phase, we conduct
4-shot ICL tuning. The 4 context samples are ran-
domly selected from the same task. For each ICL
training sample, losses are applied to both context
samples and training sample. Thus, the effective
training shot ranges from 0 to 4. We also include
LLaVA-Instruct-665k into training to preserve gen-
eral VQA capability, but only train with 0-shot.
While the goal is to do relevancy evaluation, we
find that ICL training with only relevancy data is
prone to overfitting. To alleviate this, we add 24k
ICL samples of general VQA tasks created from
TDIUC. The training is conducted with LoRA us-
ing 8× A100s. Input token length limit is set to
4096. As one image takes 576 tokens, it allows
for 4 context samples in most cases. The learning
rate of instruction tuning phase is 1.5e-4. Other
hyper-parameters are kept the same as LLaVA 1.5.

Evaluation Details. We evaluate binary predic-
tion accuracies on the test split of training tasks,
hold-out and unseen tasks. During inference, each
dataset uses a hand-crafted task instruction that is
unseen during training. The in-context samples
are sampled from training data in a balanced man-
ner, i.e., relevant and not relevant samples alterna-
tively. In some rare cases where 4-shot inference
exceeds 4096 tokens, we adjust token limit to 5120
to achieve a valid prediction.
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Figure 4: Effect of task instructions on LLaVA 1.5-7B.

4.2 Results
Effect of Task Instructions. We first study the ef-
fect of task instructions during inference on LLaVA
1.5 model. From Fig. 4, it can be seen that using
task instructions achieves better accuracies on 5 out
of 6 tasks. Since LLaVA 1.5 is not trained specifi-
cally for our binary image-text relevancy task, rele-
vancy instructions provide useful information.

Evaluation on Training and Unseen Tasks. Fig-
ure 3 plots the evaluation results of LLaVA 1.5 and
our LLaVA-RE model. On the test split of 5 train-
ing tasks, LLaVA-RE achieves much higher accu-
racies than LLaVA 1.5 with both 7B and 13B Vi-
cuna backbones. LLaVA 1.5’s accuracies are below
50% on some challenging tasks such as wiki and
recipe, showing that binary image-text relevancy
evaluation can sometimes be hard for off-the-shelf
state-of-the-art models. The improvement of our
models is consistent on 3 hold-out training tasks
and 2 unseen tasks, which validates the generaliza-
tion capability of LLaVA-RE. In the evaluations,
2-shot inference does not show much difference
compared to 0-shot. One reason is that the ICL
instruction tuning also optimizes 0-shot loss on the
training tasks. Another reason is that 2-shot context
samples are randomly selected and not semantically
related to the test example.

Evaluation on Fine-grained Tasks. To further
study the influence of ICL context examples, we
evaluate LLaVA-RE on 6 fine-grained tasks. It is
worth mentioning that these tasks are very differ-
ent from the training and unseen test tasks in the
previous subsection. The fine-grained classes have
subtle definition and merely overlap with our train-
ing data. The left part of Fig. 5 plots the averaged
accuracies under different numbers of shots. The
ICL contexts are either random or semantic-related.
In the former situation, context examples are ran-
domly sampled from the whole dataset; in the latter
situation, context examples share the same texts as
the test example. The accuracy for 0-shot inference
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Figure 5: Evaluation results averaged over 6 fine-
grained tasks on Ours-7B, using random or sematic-
related ICL context examples, (left): accuracies, (right):
recalls for negative and positive samples. 0-shot results
are shown in a red bar for a comparison.

is unsatisfactory. From the recall plots on the right
part of Fig. 5, we see that the predictions are biased
towards a negative answer (i.e., “Not Relevant”).
This could be attributed to the distribution shift be-
tween training and fine-grained tasks. When doing
evaluation with ICL contexts (Shot>0), the predic-
tions become more balanced and the overall accu-
racies improve over 0-shot results. Using semantic-
related contexts clearly outperforms random con-
texts. These observations validate the effectiveness
of ICL in our image-text relevancy evaluation.

5 Conclusion

In this paper, we study the important task of bi-
nary image-text relevancy evaluation. We present
LLaVA-RE, a first attempt based on MLLM. It
leverages task instructions and multimodal in-
context samples to handle complex relevancy tasks.
Furthermore, we create a novel binary relevancy
dataset for training and evaluation. Experimental
results validate the effectiveness of our framework.
In future work, we plan to compare our model with
more MLLMs and traditional semantic embedding
models.

Limitations

Relevancy task instructions. This paper stud-
ies the evaluation of relevancy between image and
complex text. In some scenarios, the definition of
relevancy can be ambiguous if we focus on differ-
ent aspects. For example, an image of a husky and
a text of corgi can be regarded as relevant in terms
of the general dog category, but irrelevant if focus-
ing on the dog breeds. We use a few sentences
of task instructions as the model input. However,
how well an MLLM can follow those fine-grained
instructions relies on the foundational capability
of the LLM backbone. In NLP, an LLM founda-
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tion model usually requires a sufficient model size
(i.e. 13B) to have a good understanding of complex
texts. Our training process does not own control
of this instruction following capability. It will be
necessary to understand how different LLM model
sizes affect the understanding of easy and challeng-
ing relevancy tasks. Besides, the task instructions
we use are written by human. It is helpful to ex-
plore the best form of task instructions for MLLM
in our relevancy evaluation situation.

Context samples size. Due to the 4096 input to-
kens limitation of LLM backbones, we can only use
up to four context samples (image-text pairs). How-
ever, four samples may not be enough for some
ambiguous relevancy tasks. One image takes 576
tokens, which has a large redundancy. There are
some works showing that the number of image to-
kens can be even reduced from 576 to 9 without
affecting the performance much (Cai et al., 2024).
In future work, it is meaningful to study how to
combine these techniques into LLaVA-RE to incor-
porate more context samples.

Label noises. We constructed multiple binary rel-
evancy tasks from existing public datasets. The
most challenging part is how to define negative
pairs. In this paper, we use some heuristic ideas,
such as sampling another image from the same
category based on image similarities. However,
the image similarity scores may not necessarily
reflect the true fine-grained correlations, and this
procedure inevitably introduces some noisy labels.
Existing public multi-modal datasets mostly are
not built to evaluate relevancy. How to construct
high-quality relevancy labels, e.g., by expert anno-
tations, is a challenging yet important problem for
our future explorations.
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A Appendix

A.1 Data Creation Details

We created several binary relevancy datasets for
training and evaluation, based on public data
sources. Below we present creation details for each
task.

LLaVA. LLaVA-Visual-Instruct 150K (Liu et al.,
2024a) is constructed for visual instruction tun-
ing by prompting GPT-4 API. It contains three
subtasks: detailed description, conversation and
complex reasoning. The images are from COCO
dataset (Lin et al., 2014). Each raw sample contains
one image I and a series of questions and answers
{(Qi, Ai)} related to the image. We convert the
QA series into a long text T by applying a simple
template of “Question: {Q} Answer: {A}” on each
QA. (I, T ) thus defines a positive image-text pair.
To create non-relevant data, we randomly sample
another image Ĩ that belongs to the same category
as I and define {Ĩ , T} as the negative pair. For
evaluation purpose, we create hold-out test tasks
using COCO person category, which is disjoint
with the training categories.

Wiki. Wikipedia-based Image Text (WIT)
Dataset (Srinivasan et al., 2021) is a large
multimodal multilingual dataset extracted from
Wikipedia pages. The original data is composed
of 37.6 million entity rich image-text examples
across 108 Wikipedia languages, while we only
use a very small portion of English sources
(20k). One WIT data entry includes several
fields such as page title, page description,
section text, section image, etc. Since
section text and section image co-exist in
the page, it is reasonable to define them as the
positive image-text pair. On the other hand, page
description describes the same topic as section
text yet has different details, we define page
description and section image as the negative
image-text pair.

Recipe. RecipeQA (Yagcioglu et al., 2018) is a
challenging dataset for multimodal comprehension
of cooking recipes. Each recipe consists of textual
descriptions of several steps to cook a particular
food, and among them the first step usually talks
about ingredients. Along with the recipe is a choice
list of one positive image about this food and three
negative images about other food. We filter out
recipes whose first step has a title of “ingredients”.

Then we define positive image-text pair as positive
food image and textual description of the first step,
and similarly negative image-text pair with negative
food images.

TextVQA. TextVQA (Singh et al., 2019) is a
VQA dataset that requires models to read and rea-
son about text in images to answer questions about
them. For example, one question is “what kind
of mushrooms are being advertised?”, and the an-
swer is “breaded”. All questions and answers are
short. To create a long text for our relevancy eval-
uation purpose, we send the image, question and
answer to Claude 3 Sonnet and ask Claude to gen-
erate a few sentences to justify the answer, e.g.,

“The advertisement clearly states ‘Try Our Enchant-
ing Breaded Mushrooms’ at the bottom, directly
referring to breaded mushrooms as the featured
item being promoted. The image reinforces this
by depicting large, breaded mushroom-like struc-
tures alongside a character from Alice in Wonder-
land’s whimsical setting, playing on the ‘wonder-
land’ theme mentioned. Therefore, based on the
explicit text and visual context provided, the type
of mushrooms being advertised are indeed breaded
mushrooms.”. Given the question Q, answer A and
reasoning R, we apply a template of “Question:
{Q} Answer: {A}. {R}” to create a long text. A
positive pair is an image and the corresponding
question and answer. To get a negative pair, we
randomly sampled another image from the same
category based on image similarity scores.

TDIUC. Task Driven Image Understanding Chal-
lenge (TDIUC) (Kafle and Kanan, 2017) is a
VQA dataset organized into 12 different categories.
Each category focuses on a particular task such
as object presence, sport recognition, etc.
It also introduces a category of absurd questions
that are meaningless for a given image. To make
binary relevancy tasks, we only use data from three
categories: activity recognition, sentiment
understanding and utility/affordance which
require more reasoning capability. We use Claude
3 Sonnet to generate a few sentences of justification
based on the image, question and answer. A posi-
tive pair is an image and the corresponding question
and answer, using a similar template as textvqa.
To get a negative pair, we randomly sample another
question/answer from the same category based on
text similarity scores.
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ChartQA. ChartQA (Masry et al., 2022) is a
benchmark for question answering about chart im-
ages. These images are different from training
tasks, and used to evaluate models’ generalization
ability. We use Claude 3 Sonnet to generate a few
sentences to justify the answer, and create posi-
tive/negative pairs in a similar manner as textvqa.

Infographics. InfographicVQA (Mathew et al.,
2022) comprises a diverse collection of infograph-
ics with question-answer annotations. The ques-
tions require elementary reasoning and basic arith-
metic skills over the document layout, textual con-
tent, graphical elements and data visualization. We
use Claude 3 Sonnet to generate a few sentences
to justify the answer, and create positive/negative
pairs in a similar manner as tdiuc.

Fine-grained. We create 6 tasks from commonly
used fine-grained classification datasets including
cars (Krause et al., 2013), CUB (Wah et al., 2011),
dogs (Khosla et al., 2011), pets (Parkhi et al.,
2012), flowers (Nilsback and Zisserman, 2008) and
food (Bossard et al., 2014). For each dataset, we
ask Claude 3 Sonnet to generate useful visual fea-
tures to distinguish one class. With this, each class
label is converted into a long textual description
focusing on fine-grained visual features. For exam-
ple, give a car model “Dodge Caliber Wagon 2007”,
Claude responses with “The Dodge Caliber Wagon
2007 has a distinctive boxy and upright shape with
a tall stance and pronounced wheel arches. Its
front end features a characteristic crosshair grille
with the Dodge logo in the center, and angular
headlights that sweep back towards the fenders.
The side profile shows a long greenhouse with an
upswept beltline and a rear quarter window, giving
it a distinctive wagon silhouette. The wheels are
typically five-spoke alloy rims, and the body color
options range from bold shades like Infrared and
Sunburst Orange to more subdued hues like Silver
and Black. Distinctive badging on the rear liftgate
and lower body panels proudly displays the ‘Cal-
iber’ name and Dodge branding.” The positive pair
is an image and the corresponding class description.
To get a negative pair, we randomly sample another
image from the same fine-grained class.

A.2 Detailed Accuracies

Table A.1 lists the detailed accuracies of compari-
son models on training and unseen tasks.

A.3 Sampled Task Instructions

Below we show some task instructions from sam-
pled datasets.

LLaVA. You are given an image and a series of
Question and Answer. Your task is to judge whether
the image is relevant to these Questions and An-
swer. Here are several important instructions:
- Do not simply confirm the the object exists in im-
age.
- Think about whether there is visual evidence sup-
ports or unrelated or contradicts the question and
answer.
- In the textual question and answer, look for at-
tributes such as color, size, shape, location, etc.
And evaluate if the image matches these attributes.
- In the textual question and answer, look for context
or settings of how the object is shown (background,
neighboring objects, usage scenarios, etc.), and
evaluate if the image shows the context.
- Use only the clear visual information that can be
directly seen from image to determine the relevancy
to question and answers.
- IMPORTANT: do not reason with your own knowl-
edge or additional hallucination or guessing to de-
termine relevancy.
- IMPORTANT: do not say ‘yes’ if certain aspects
cannot be determined visually, Look very careful
at the image!
- IMPORTANT: do not say ‘yes’ if answering re-
quires knowledge beyond the image.
- Only say ‘yes’ if the image shows direct and obvi-
ous matching visual clues that supports the textual
question and answer.
- If there are multiple question and answer, only
say ‘yes’ if the image is relevant to all question and
answer.
- If image is only related to the object and does not
match the attributes, you should say ‘no’.

Textvqa. You are given an image and a pair of
question and answer. Your task is to judge whether
the image is relevant to the question and answer.
Here are several important instructions:
- The question focuses on text understanding. The
image may be coherent or incoherent to this ques-
tion.
- The answer includes an explanation to justify itself.
It contains important details about a true relevant
image.
- In the text, look for descriptions about objects,
characters, colors, spatial relationships. Check
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Table A.1: Detailed evaluation accuracies on training and unseen tasks. (‘lv’ short for ‘llava’, ‘info.’ short for
infographics, hohold-out test data, †unseen test tasks)

model shot lv_cr lv_cv lv_dt wiki recipe textvqa tdiuc lv_crho lv_cvho lv_dtho chartqa† info.†

LLaVA 1.5-7B 0 70.8 74.3 69.7 49.3 32.2 70.0 68.7 73.9 75.4 70.0 75.1 70.9
Ours-7B 0 91.9 93.5 96.0 97.7 88.3 97.1 89.3 92.2 93.1 94.1 94.6 80.8
Ours-7B 2 92.4 93.4 96.7 93.7 88.2 96.5 89.3 92.0 92.8 94.5 94.8 82.3

LLaVA 1.5-13B 0 63.0 70.6 78.4 49.0 29.6 55.9 68.0 72.5 74.0 80.9 53.1 65.4
Ours-13B 0 93.7 94.7 97.0 98.3 88.6 96.3 89.7 93.6 93.6 95.0 91.8 79.7
Ours-13B 2 93.6 94.6 97.0 95.3 89.3 96.4 88.3 93.7 93.3 95.2 93.0 79.1

whether these descriptions match the image.
- In the image, recognize existing characters such
as digits, english letters, before making a judge-
ment.
- Use only the clear visual information that can be
directly seen from image to determine the relevancy
to text.
- IMPORTANT: do not reason with additional hal-
lucination or guessing to determine relevancy.
- IMPORTANT: do not say ‘yes’ if certain aspects
cannot be determined visually, Look very careful
at the image!
- Only say ‘yes’ if the image shows direct and obvi-
ous matching visual clues that supports the text.
- If image contradicts with answer regarding the
question, you should say ‘no’.
- The answer must be a single word of ‘Yes’ or ‘No’.

Cars (fine-grained). You are given a car image
and a short description about a specific car model.
Your task is to judge whether the image is relevant
to the text. Here are several important instructions:
- Carefully look at details in the image, such as car
shape, decoration, color, number of doors, wheel
sizes.
- The image may look similar to the described car
model, but not exactly match it.
- Use your own knowledge to distinguish any visual
differences between the image and the car descrip-
tion.
- Only say ‘yes’ if the image shows exactly the same
fine-grained attributes as the description. Other-
wise, say ‘no’.
- The answer must be a single word of ‘yes’ or ‘no’.

A.4 Sampled Image-Text pairs
We show some sampled image-text pairs from train-
ing and test tasks in Tables A.2,A.3.
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Table A.2: Sampled image-text pairs from different tasks.

Task: llava; Label: ‘relevant’ Question: What role might a ferry play in a location like this?
Answer: In this oceanic scene with a view of the mountains, a ferry might play
a significant role in providing transportation services between various coastal
points, including towns, cities, and islands. As the landscape is surrounded by
a large body of water, the ferry connects these locations and enables people
to travel across the water efficiently and conveniently. It can be a preferred
mode of transport for commuters, tourists, or locals who need to access
services or visit attractions in different areas. Additionally, ferries might also
accommodate vehicles and cargo, providing further convenience to travelers
and playing a crucial role in the region’s economy by facilitating trade and
the movement of goods.
Is the image relevant to this Question and Answer?

Task: llava; Label: ‘not relevant’ Question: Explain the visual content of the image in great detail.
Answer: The image captures a city street scene at either dusk or dawn with a
flock of birds flying high above. There are at least 15 birds scattered across
the sky in various positions, creating a sense of motion and activity.
Along the street, cars are parked on the side, and some are in motion, with
one of the moving cars having its headlights on. The street itself is lined with
trees and buildings, adding to the urban atmosphere.
Traffic lights are also visible in the scene, with three on the left side and two
on the right side of the street. The overall mood of the image is serene as the
sun goes down, creating an end-of-the-day feeling in the city.
Is the image relevant to this Question and Answer?

Task: wiki; Label: ‘relevant’
Text: A pantile is a type of fired roof tile, normally made from clay. It is
S-shaped in profile and is single lap, meaning that the end of the tile laps only
the course immediately below. Flat tiles normally lap two courses.
A pantile-covered roof is considerably lighter than a flat-tiled equivalent and
can be laid to a lower pitch.
Pantiles are used in eastern coastal parts of England and Scotland including
Norfolk, East Yorkshire, County Durham, Perthshire, Angus, Lothian and
Fife, where they were first imported from the Netherlands in the early 17th
century. They are rarely used in western England or western Scotland, except
in Bristol and the Somerset town of Bridgwater.
Roofing pantiles are not to be confused with a type used for paving, after
which the Georgian colonnade in Tunbridge Wells is named. Whilst called
pantiles, the paving tiles which were installed there in 1699 were one-inch-
thick square tiles made from heavy wealden clay, so-named as shaped in
a wooden pan before firing. The pantile paving in Tunbridge Wells was
replaced with stone flag tiles in 1792.
Is the image relevant to this Text?

Task: recipe; Label: ‘relevant’

Ingredients: First of all collect the following ingredients (this is what I used
for mine but if you want bigger or smaller meat loaf use your own quantity):
700g Minced meat 2 Packages of bacon 4 eggs (1 raw, 3 boiled) Ham Salt
Pepper Parmigiano Cheese
Are the Ingredients necessary to make food in the image?

Task: textvqa; Label: ‘not relevant’
Question: what type of plane is this?
Answer: lape. The image depicts an old propeller-driven aircraft sitting on
a grassy field. The registration or name painted on the side of the aircraft
fuselage clearly reads "EC-AGC LAPE", indicating that the type of plane
shown is a Lape model. The black and white photograph captures this vintage
aircraft in an outdoor setting, providing visual evidence that confirms the
stated answer that this is indeed a Lape type of plane.
Is the image relevant to this Question and Answer?
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Table A.3: Sampled image-text pairs from different tasks.

Task: tdiuc; Label: ‘relevant’

Question: What are elephants thought to be afraid of?
Answer: mice. While the image shows a group of elephants calmly walking
together, it does not directly relate to what elephants may be afraid of. How-
ever, the provided answer that elephants are thought to be afraid of mice is an
interesting folk belief or myth.
This notion likely stems from observations or anecdotes of elephants appear-
ing startled or reacting to the sudden movements or sounds of small rodents,
which could seem disproportionate to their massive size. However, scientific
evidence suggests that elephants’ fear of mice is likely exaggerated, and they
may simply be reacting to unexpected stimuli rather than being genuinely
afraid of the mice themselves.
While the origins of this belief are unclear, it persists as an enduring myth
or legend about these majestic creatures. The image alone cannot confirm or
deny this claim, as it simply depicts elephants in their natural habitat without
any mice present.
Is the Answer relevant to this Image and Question?

Task: infographics; Label: ‘not rele-
vant’

Question: What is the majority percentage of females in the wholesale &
retail industry of Canada?
Answer: 21.0%
Question: What percent of the women entrepreneurs in Canada work for
31-39 hours a week?
Answer: 19.8%
Question: What percent of the women employees in Canada work for 41-49
hours a week?
Answer: 2.7%
Question: How many hours per week is spend on work by 17.4% of the
women entrepreneurs in Canada?
Answer: 40 HOURS
Is the image relevant to these Question and Answer?

Task: chartqa; Label: ‘not relevant’ Question: What is the sum of making progress, losing ground and same in
the year 2011?
Answer: 99. The image shows a line graph depicting the perceptions of
Mexicans regarding the government’s progress against drug trafficking over
the years 2011 to 2015. In 2011, the values for "Making progress," "Losing
ground," and "Same" add up to 45, 30, and 19 respectively, which totals 94.
However, the provided answer of 99 does not correspond to the sum of these
three values in 2011 based on the information given in the graph. To justify
the answer, I would need additional context or clarification on the data being
referenced.
Is the image relevant to this Question and Answer?

Task: flowers; Label: ‘relevant’
The prince of wales feathers is a perennial flowering plant with tall spikes
of red, velvety flowers. The vibrant red petals are tightly clustered together
in a cylindrical shape, forming a distinctive feather-like appearance. The
flowers emerge from a terminal spike, with overlapping bracts that provide
a protective covering. The lance-shaped leaves are mid-green in color and
arranged oppositely along the stem. The plant can grow up to 1.5 meters tall,
with multiple flowering spikes emerging from a single stem.
Is the image relevant to this flower description?

Task: cars; Label: ‘not relevant’
The Ford Fiesta Sedan 2012 has a compact, three-box sedan body style with
a distinct front grille featuring the iconic Ford blue oval logo in the center. Its
headlights are swept back and have a distinctive shape, while the taillights
have a distinctive LED light signature. The side profile features pronounced
wheel arches and a character line running along the length of the car. The
alloy wheels have a multi-spoke design and are typically 15 or 16 inches in
diameter. Depending on the trim level, the exterior may feature body-colored
door handles, side mirrors, and other accents, while higher trims may have
chrome accents.
Is the image relevant to this car description?
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Abstract

This study introduces a novel framework for
evaluating Large Language Models (LLMs)
and Vision-Language Models (VLMs) in Per-
sian, a low-resource language. We develop
comprehensive datasets to assess reasoning,
linguistic understanding, and multimodal ca-
pabilities. Our datasets include Persian-OCR-
QA for optical character recognition, Persian-
VQA for visual question answering, Persian
world-image puzzle for multimodal integration,
Visual-Abstraction-Reasoning for abstract rea-
soning, and Iran-places for visual knowledge
of Iranian figures and locations. We evaluate
models like GPT-4o, Claude 3.5 Sonnet, and
Llama 3.2 90B Vision, revealing their strengths
and weaknesses in processing Persian. This
research contributes to inclusive language pro-
cessing by addressing the unique challenges of
low-resource language evaluation. Addition-
ally, we release samples of our dataset to sup-
port further research in Persian multi-modal
tasks1.

1 Introduction

Large Language Models (LLMs) have undergone
rapid advancements in recent years, particularly in
multimodal frameworks (Zhang et al., 2024; Wu
et al., 2023) that integrate and process diverse data
types such as text, audio, and images. These break-
throughs have expanded the applications of LLMs
across various domains, from conversational AI to
content generation (He et al., 2024) and knowledge
retrieval (Long et al., 2024). Multimodal LLMs
demonstrate remarkable capabilities in aligning
and interpreting visual-textual information (Ataal-
lah et al., 2024), making them powerful tools for
tasks that span different modalities (Nguyen et al.,

1https://huggingface.co/AUT-NLP

2023). However, as the capabilities of LLMs grow,
so does the need for rigorous evaluation methods to
measure their effectiveness and ensure their outputs
align with the intended goals (Huang and Zhang,
2024). Evaluating LLMs became a crucial area
of research, especially when considering other lan-
guages rather than high-resource ones, where re-
sources are abundant (Chang et al., 2023).

Although Persian is the native or second lan-
guage for around 130 million people, high-quality
datasets and benchmarks for the language remain
limited (Agic et al., 2016). While researchers have
introduced foundational datasets for pretraining
LLMs (Sabouri et al., 2022; Salmasi and Kabir,
2023; Farsi et al., 2024), these resources are of-
ten single-modality. Evaluating LLM capabilities,
such as reasoning, verbal intelligence, and mul-
timodal reasoning, remains underexplored. Mul-
timodal frameworks compound this challenge by
requiring datasets that effectively pair text with
complementary modalities, such as images, videos,
while maintaining linguistic nuances (Hedderich
et al., 2020).

In this study, we address these challenges by
creating a comprehensive dataset designed explic-
itly for the Persian language. These datasets are
constructed from scratch and designed to evaluate
LLMs on multiple dimensions, including reasoning
and verbal intelligence similar to prior works (Fu
et al., 2024). Furthermore, we assess a set of large
language models’ performance with our frame-
work, which measures the relative difficulty of dif-
ferent datasets and ensures a uniform evaluation
across tasks (Li et al., 2023b). By investigating the
reasoning capabilities of LLMs and their ability to
interact with Persian linguistic constructs and mul-
timodal data, we aim to uncover the extent of their
knowledge base and adaptability to low-resource
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languages. To tackle these challenges, this study
proposes a multimodal evaluation framework fo-
cusing on creating datasets tailored to the Persian
language and evaluating the capabilities of LLMs
and Vision-Language Models (VLMs) in process-
ing Persian. The framework assesses models across
key dimensions, including reasoning abilities and
visual-textual comprehension, while considering
the difficulty of the datasets (Zhu et al., 2023). This
work aims to evaluate the performance of current
LLMs in multimodal contexts, providing a compre-
hensive assessment of their capabilities in Persian.
This research fills critical gaps in low-resource lan-
guage evaluation while contributing to developing
inclusive, adaptable, and effective language pro-
cessing models for diverse applications.

2 Related Work

The work related to our study can be divided into
three main areas, discussed in the following sec-
tions. Together, these areas offer a foundational
understanding of the challenges and opportunities
in developing and evaluating models in multimodal
and low-resource language settings.

Benchmarking LLMs and Dataset Develop-
ment for Low-Resource Languages. Multi-
modal evaluation frameworks are critical for as-
sessing models integrating and processing diverse
data modalities. MME introduces a comprehen-
sive benchmark for multimodal language models
(MLLMs), evaluating perception and cognition
abilities across 14 subtasks, enabling comparisons
among advanced MLLMs (Fu et al., 2024). Sim-
ilarly, SEED-Bench-2 categorizes MLLM capa-
bilities hierarchically, incorporating tasks like im-
age generation and providing detailed insights into
model strengths and weaknesses (Li et al., 2023a).

However, developing benchmarks and datasets
for low-resource languages like Persian is challeng-
ing due to limited resources and linguistic diver-
sity (Sabouri et al., 2022). Multilingual bench-
marks, such as IGLUE (Bugliarello et al., 2022),
support zero-shot and few-shot learning across 20
languages, highlighting the potential of multilin-
gual datasets but often lacking specific resources
for Persian. While comprehensive benchmarks like
GAOKAO (Zhang et al., 2023a) showcase LLMs’
strengths in objective tasks, they also expose limi-
tations in domain-specific challenges. For Persian,
benchmarking efforts remained scarce, underlining
the need for evaluation frameworks that reflect its

unique linguistic and cultural features.
Benchmarks and Visual Reasoning for Vision-

Language Models. Vision-Language Models
(VLMs) are evaluated using benchmarks designed
to test their ability to handle both visual and textual
inputs (Xu et al., 2024). Benchmarks like VisIT-
Bench focus on tasks such as accessibility assess-
ments and image-caption generation (Bitton et al.,
2023), while GEM evaluates multilingual vision-
language tasks, including image and video inter-
actions (Su et al., 2021). Visual reasoning bench-
marks like GRASP test language grounding and in-
tuitive physics understanding in video-based tasks
(Jassim et al., 2023), while Multimodal-CoT uses
chain-of-thought prompting to improve structured
reasoning (Zhang et al., 2023b). Together, these
benchmarks comprehensively evaluate VLM capa-
bilities across diverse tasks. For dataset creation,
we studied these works to establish best practices.

3 Datasets

We focused on investigating the evaluation of the
multimodality attribute in Large Language Models
(LLMs). Multimodal datasets contain data from
multiple modalities, such as text, images, audio,
video, or other structured/unstructured data types.
For this study, we prioritized text-image data, en-
abling in-depth exploration of the model’s ability
to process and reason across these two modalities.

To create a comprehensive benchmark for VLMs
in the Persian language, particularly focusing on
multimodal varieties, we emphasized several key
aspects like their reasoning skills, creativity, famil-
iarity with linguistics in images, and knowledge
about places in Iran. Our dataset has five distinct
sets that we describe in the following paragraphs.

Persian-VQA: To create a VQA (Visual Ques-
tion Answering) dataset in Persian, we used the
Zhang et al. (2016) dataset, which is one of the
most popular VQA datasets in English. This
dataset contains 7,764 yes/no questions derived
from 1,023 images. We translated the entire dataset
into Persian using the GPT-4o model. To ensure the
quality of the translated questions, we conducted a
manual review of the generated dataset. An exam-
ple of a record of this dataset is shown in Figure 1.

Persian-OCR-QA: Nowadays, OCR (Optical
Character Recognition) has become one of the
most important tasks due to its numerous appli-
cations (Peng et al., 2013; Singh et al., 2012). To
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Figure 1: An example of Persian-VQA. Persian
question-answer pair and its original English version.

evaluate the performance of current models on this
task, we introduced new datasets to measure the
performance of LLMs on OCR tasks in the Persian
language. We used the Persian-OCR dataset, which
contains 7,000 pages. Using GPT-4o-mini to make
a question from the text and answer, we extracted
ten question-answer pairs from each page, resulting
in a comprehensive dataset of 70,000 entries.

Persian-VAR: To evaluate Vision Language
Models (VLMs) in the domain of abstract reason-
ing, we introduce a novel dataset, Persian-VAR
(Persian Visual-Abstraction-Reasoning), compris-
ing 120 samples, inspired by Raven’s Progressive
Matrices (Carpenter et al., 1990). This non-verbal
test is typically used to assess general human intel-
ligence and abstract reasoning, and it serves as a
non-verbal estimate of fluid intelligence. It is one
of the most commonly administered tests to groups
and individuals, from young children to the elderly.
To create this dataset, we collected entrance ex-
ams for gifted middle and high schools in Iran, as
illustrated in figure 2, providing a rich source of
complex visual-abstraction-reasoning challenges
that align with the cognitive capabilities assessed
by Raven’s matrices.

Figure 2: An Example of Persian-VAR. Persian
question-answer pair and its original English version.

Persian-WIP: The Persian Word-Image Puzzle
dataset assessed multimodal models’ ability to in-
tegrate and process visual and textual information.
By challenging models to combine visual cues with
linguistic interpretation, this dataset evaluates their
capability to manage complex inputs. Such tasks

demand creative thinking and language skills, mak-
ing it a robust framework for testing image recog-
nition and language comprehension skills. This
serves as both an educational tool and a bench-
mark for evaluating the effectiveness of multimodal
systems. The dataset was compiled using crowd-
sourcing, crawling social apps like Telegram and
Instagram, and generating images with AI mod-
els like Midjourney. Figure 3 displays a sample
instance from the dataset.

Figure 3: An Example of Persian-WIP. Taas-Kebab, a
traditional Persian dish. The name combines "Taas"
(dice) and "kebab" (grilled dish), referring to a dish
made with diced kebab. When an image shows diced
kebab, it represents Taas-Kebab in Persian.

Iran-Places: This dataset is designed to evalu-
ate models on their knowledge of notable places
in Iran, akin to the Persian version of (Weyand
et al., 2020). It consists of over 500 images, with
each province in Iran represented by at least seven
images. This comprehensive coverage ensures a
diverse representation of the country’s geographi-
cal and cultural landmarks. An example of this is
illustrated in Figure 4.

Figure 4: An Example of Iran-Places: Persian question-
answer pair and its original English version.

4 Experiments

We tested current LLMs, such as ChatGPT-4o,
Claude 3.5, and Llama 3.2, performance on the pro-
posed benchmark. GPT-4o demonstrated superior
performance in tasks requiring advanced reasoning
and visual comprehension in Persian, indicating
higher overall scores in cognitive tasks (Table 1).
Claude 3.5 Sonnet excelled in text-based tasks like
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Task Metric GPT-4oa Claude 3.5 Sonnetb Llama 3.2 90B Vision
P-VAR Accuracy (%) 16.22 11.71 13.51

Persian-OCR-QA
BLEU-1 (%) 52.61 57.53 23.09
ROUGE-Lc(%) 63.41 77.47 44.96

Persian-VQA
Accuracy (%) 89.17 85.86 82.89
F1 Score (%) 91.54 87.82 86.78

Iran-Places Relaxed Exact matchd(%) 16.44 17.07 16.43
a The GPT-4o-2024-09-03 version is used in this benchmark.
b The Claude-3.5-Sonnet-2024-10-22 version is used in this benchmark.
c We used the F1 score for ROUGE-L.
d We awarded 0.5 points if the name of the province or place was predicted correctly, 1 point if both were

correct, and 0 points otherwise.

Table 1: Top 3 VLMs Performance on Different Multimodal Persian Tasks

OCR and text generation, suggesting strong tex-
tual processing capabilities. Llama 3.2 90B Vision
showed balanced performance but with lower over-
all scores than the others.

All models struggled significantly with multi-
modal integration tasks, failing to achieve exact
matches in the Persian Word-Image Puzzle, neg-
atively impacting their overall multimodal scores.
Similarly, low performance on tasks involving spe-
cific Iranian locations revealed limitations in cul-
turally specific visual knowledge, affecting overall
effectiveness in these areas.

These varied results, as detailed in Table 1, high-
light the complexities of evaluating language mod-
els in Persian, showing strengths in specific areas
but deficiencies in multimodal and culturally spe-
cific tasks. This underscores the need for further
research and improved datasets to enhance model
performance across diverse tasks.

5 Future Work

Our findings highlight the need for more special-
ized datasets for low-resource languages to im-
prove model evaluation and performance. Future
research should focus on developing new evalu-
ation metrics, expanding multimodal datasets to
include additional modalities like video and audio,
and advancing model capabilities in handling com-
plex multimodal tasks for the Persian language.

6 Conclusion

In this study, we introduced a framework for
evaluating Large Language Models (LLMs) and
Vision-Language Models (VLMs) in Persian, fo-
cusing on five specialized datasets: Persian-OCR-
QA, Persian-VQA, Persian Word-Image Puzzle (P-

WIP), Persian Visual-Abstraction-Reasoning (P-
VAR), and Iran-Places. Our evaluations of GPT-
4o, Claude 3.5 Sonnet, and Llama 3.2 90B Vision
provided significant insights. GPT-4o excelled in
abstract reasoning and visual question answering,
highlighting its strong visual-linguistic integration
capability. Claude 3.5 Sonnet showed superior
performance in Persian-specific OCR tasks. Al-
though all models performed similarly in geograph-
ical knowledge, they struggled with the Persian
Word-Image Puzzle, revealing challenges in tasks
needing creative multimodal synthesis.
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Abstract

We introduce TaiwanVQA, a novel visual
question answering benchmark designed to
evaluate vision language models’ (VLMs) abil-
ity to recognize and reason about Taiwan-
specific multimodal content. TaiwanVQA com-
prises 2,000 image-question pairs covering di-
verse topics relevant to Taiwanese culture and
daily life. We categorize the questions into
recognition and reasoning tasks, further sub-
classifying reasoning questions based on the
level of external knowledge required. We con-
duct extensive experiments on state-of-the-art
VLMs, including GPT-4o, Llama-3.2, LLaVA,
Qwen2-VL, and InternVL2 models. Our find-
ings reveal significant limitations in current
VLMs when handling culturally specific con-
tent. The performance gap widens between
recognition tasks (top score 73.60%) and rea-
soning tasks (top score 49.80%), indicating
challenges in cultural inference and contextual
understanding. These results highlight the need
for more culturally diverse training data and
improved model architectures that can better
integrate visual and textual information within
specific cultural contexts. By providing Tai-
wanVQA, we aim to contribute to the devel-
opment of more inclusive and culturally aware
AI models, facilitating their deployment in di-
verse real-world settings. TaiwanVQA can be
accessed on our GitHub page.

1 Introduction

Multimodal vision-language models (VLMs) have
achieved remarkable success in integrating visual
and textual information, enabling applications rang-
ing from image captioning to visual question an-
swering (Li et al., 2023; Dai et al., 2023). Despite
these advances, most existing benchmarks focus
on general-domain knowledge and widely spoken
languages, often overlooking the challenges posed
by culturally specific content and underrepresented
languages (Yue et al., 2024a,b; Fu et al., 2024).

Understanding and reasoning about culturally
nuanced content is crucial for deploying AI sys-
tems in diverse real-world settings (Nayak et al.,
2024). For instance, accurately interpreting tradi-
tional symbols, local customs, or region-specific
artifacts requires models to possess not only visual
recognition capabilities but also contextual and cul-
tural knowledge (Hershcovich et al., 2022).

To address this gap, we introduce TaiwanVQA,
a visual question answering benchmark specifically
designed to evaluate VLMs’ abilities to recognize
and reason about Taiwan-specific content. Taiwan-
VQA comprises 1,000 images paired with 2,000
questions covering a diverse range of topics rele-
vant to Taiwanese daily life and culture, such as
traditional cuisine, local festivals, historical land-
marks, and public signage. Our contributions are
threefold:

• We introduce TaiwanVQA, the first VQA
benchmark specifically designed for Tai-
wanese cultural content, with data categorized
based on aspects of daily life

• We propose a taxonomy of culture-specific vi-
sual questions into recognition and reasoning
types, with reasoning questions sub-classified
based on required external knowledge levels

• We provide comprehensive experiments on
state-of-the-art VLMs including GPT-4 (Ope-
nAI, 2023), revealing their limitations in han-
dling culture-specific content.

Our findings indicate that while models perform
reasonably well on recognition tasks, their perfor-
mance significantly drops on reasoning tasks that
require deeper cultural understanding. This under-
scores the need for more culturally diverse training
data and enhanced model architectures capable of
integrating visual and textual information within
specific cultural contexts.

1
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Figure 1: An Illustration of the TaiwanVQA Benchmark. Each row shows an image paired with two questions: a
recognition question (left) and a reasoning question (right), both in multiple-choice format with the correct answers
highlighted in red. Below each question, topic categories are labeled in purple (e.g., “Symbols and Signs”, “Daily
Necessities”), with additional labels in yellow for OCR requirements in recognition questions and in green for
knowledge types in reasoning questions.

By providing TaiwanVQA, we aim to contribute
to the development of more inclusive and cultur-
ally aware AI models, facilitating their deployment
in diverse real-world scenarios and promoting re-
search in underrepresented languages and cultures.

2 Related Work

The evaluation of VLMs has progressed from gen-
eral visual recognition to understanding cultur-
ally specific content. Early datasets like DOLLAR

STREET (Rojas et al., 2022) and GLDV2 (Weyand
et al., 2020) provided extensive collections of im-
ages from diverse regions but focused primarily
on recognition tasks without delving into cultural
nuances.

Recent benchmarks have aimed to directly assess
cultural understanding in VLMs. Burda-Lassen
et al. (2024) introduced MOSAIC-1.5K, a culture-
specific captioning dataset that includes images
from various regions to test models’ cultural aware-
ness in captioning tasks. Similarly, Bhatia et al.
(2024) proposed GLOBALRG, evaluating retrieval
and grounding capabilities across 15 countries, em-
phasizing local concepts within a global context.

Nayak et al. (2024) introduced the CUL-
TUREVQA dataset, a benchmark designed to eval-
uate VLMs on cultural understanding across mul-
tiple countries and cultures. CULTUREVQA com-
prises 2,378 image-question pairs from 11 coun-
tries spanning 5 continents, with questions focusing

on traditions, rituals, and cultural artifacts. While
this dataset advances the evaluation of cultural un-
derstanding in VLMs, it allocates a smaller propor-
tion of its dataset to traditions and rituals compared
to our benchmark and uses a multiple-choice evalu-
ation format, which may not fully capture the depth
of models’ cultural reasoning capabilities.

Other efforts target more specific cultural do-
mains. Li et al. (2024b) introduced FOODIEQA,
which examines fine-grained understanding of Chi-
nese food culture through multiple-choice tasks.
Although it addresses a culturally rich dimen-
sion (food), current VLMs still lag behind human-
level performance, especially on image-based tasks.
Meanwhile, Liu et al. (2021) proposed MARVL,
focusing on visually grounded reasoning across
multiple languages and cultures, but it does not ex-
plicitly assess rich cultural common sense related
to traditions and also utilizes a true/false format.

Our work differs by focusing specifically on the
Taiwanese cultural context, providing an in-depth
evaluation of VLMs’ abilities to understand and
reason about Taiwan-specific content. TaiwanVQA
includes 2,000 image-question pairs with a sig-
nificant emphasis on traditions, rituals, and daily
life. We adopt a multiple-choice format, and en-
sure diverse and carefully designed distractors to
challenge the models’ cultural understanding. By
categorizing questions into recognition and reason-
ing tasks, and further sub-classifying reasoning

2
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w/ OCR w/o OCR All

Recognition 339 661 1,000

Basic
External

Knowledge

Image

Complexity
All

Reasoning 246 674 80 1,000

Table 1: Statistics of Recognition and Reasoning Ques-
tions by Types

questions based on the level of external knowledge
required, our benchmark offers a comprehensive as-
sessment of VLMs’ cultural understanding within a
specific regional context. This structured approach
enables a more detailed analysis of models’ capa-
bilities and limitations in handling culturally rich
content.

3 TaiwanVQA

3.1 Tasks

In constructing TaiwanVQA, we were inspired by
two recent VLM evaluation benchmarks: MME(Fu
et al., 2024) and TRANSPORTATIONGAMES(Zhang
et al., 2024). MME’s division of questions into per-
ception and cognition guided our approach, as un-
derstanding Taiwan-related visual content requires
both basic recognition and deeper reasoning. Thus,
we structured TaiwanVQA by assigning two ques-
tions to each image to fully assess models’ under-
standing of Taiwanese culture and knowledge:

• Recognition Questions – These questions
evaluate models’ ability to accurately iden-
tify Taiwan-specific visual elements, includ-
ing local cuisine, transportation facilities, na-
tive ecology, and folk activities.

• Reasoning Questions – These questions test
models’ advanced analytical abilities, requir-
ing them to not only identify visual elements
but also understand relationships between
them (such as spatial relations, usage contexts,
and cultural implications), integrating local
Taiwanese knowledge to reach accurate con-
clusions.

Within recognition questions, we specifically
marked those requiring Optical Character Recog-
nition (OCR) capabilities. These questions assess
models’ ability to recognize Traditional Chinese
text in images, crucial for understanding Taiwan’s
visual elements such as public signs and notices.

Additionally, to better evaluate models’ reason-
ing capabilities, we further categorize reasoning

questions into three types:
• Basic Reasoning Required - Questions that

can be answered through straightforward in-
ference from the image content, requiring no
external knowledge.

• External Knowledge Required - Questions
that cannot be answered through image con-
tent alone, requiring specific knowledge about
Taiwanese culture, customs, or context for ac-
curate responses.

• Image Complexity Required - Images con-
tain multiple visual elements or complex spa-
tial relationships, requiring deep visual analy-
sis for accurate judgment.

A detailed annotation process for both task types
can be found in Appendix A, and Table 1 shows
the statistical distribution across different types.

3.2 Data Collection

To construct the TaiwanVQA dataset, we selected
1,000 representative images of Taiwan, each paired
with one identification and reasoning question, gen-
erating 2,000 questions in total. Due to licensing
concerns, all images and questions were manually
designed. We recruited 9 annotators from diverse
backgrounds (varying in residence location, ethnic
identity, gender, and academic fields), who under-
went a week-long training before formal annotation.
Detailed annotation guidelines can be found in Ap-
pendix A.

Beyond the task type classification in subsec-
tion 3.1, to ensure comprehensive coverage of Tai-
wan’s daily life and cultural aspects, we established
a question classification framework comprising 13
topics and 27 subtopics. We employed GPT-4o to
perform the classification tasks to ensure consis-
tency throughout the dataset. As shown in Figure 2,
our questions primarily focus on signs and food cul-
ture, as these elements are most closely related to
Taiwanese daily life. The remaining questions are
evenly distributed across other categories, demon-
strating the diversity of our data. Detailed classi-
fication criteria and prompts used can be found in
Appendix B.

3.3 Data Quality

To validate the quality of TaiwanVQA benchmark,
evaluation was performed by annotators on 10%
randomly sampled data across three aspects:

• Question Type Correctness - compliance
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Figure 2: Distribution of Question Categories. The blue
and red bars stand for the recognition and reasoning
questions respectively. The darker bars represent the
total number of questions in the topic, and the lighter
bars represent the number of questions in the sub topics
under the topic. If there are no shallower bars, it means
that the topic has no sub topics, such as Daily Necessi-
ties.

Q1:
Recog.
Compl.

Q2:
Reas.

Compl.

Q3:
Topic

Approp.

Q4:
Subtopic
Approp.

Q5:
Question
Clarity

Q6:
Img

Clarity

Q7:
Img
Need

A1 91 98 89.7 86.1 100 98 99.5
A2 88 99 88.1 85.1 99.5 100 100
A3 94 93 94.8 92.3 99 98.5 98
A4 93 91 96.4 90.2 98.5 94 98.5

Avg. 91.5 95.3 92.3 88.4 99.3 97.6 99
N 100 100 194 194 200 200 200

Table 2: Results of quality assessment, reported in Ac-
curacy (%). Four annotators (A1-A4) evaluated sampled
data across three aspects: question compliance (Recog-
nition Q1 and Reasoning Q2), topic appropriateness
(Topic Q3 and Subtopic Q4), and clarity (Question Q5,
Image Q6, and Image Need Q7). N indicates the number
of samples evaluated for each question.

with recognition and reasoning question de-
sign guidelines

• Topic Classification Appropriateness - com-
pliance with topic and subtopic classification
definitions

• Content Clarity - question comprehensibility,
image clarity, and the necessity of the image
for answering the question

As shown in Table 2, all criteria achieved over
85% agreement rate from annotators, demonstrat-

Overall Recognition Reasoning
Model w/ w/o w/ w/o w/ w/o
GPT-4o 61.7 12.5 73.6 7.7 49.8 17.2
Llama-3.2-90B 51.6 11.1 61.8 7.0 41.4 15.2
InternVL2-76B 64.3 21.9 75.9 17.2 52.6 26.5
Qwen2-VL-72B 75.0 24.8 83.7 18.3 66.2 31.3

Table 3: Performances of VLMs in Normal and Text-
only Conditions. The Accuracies (%) evaluated with
images (w/) and without images (w/o) are reported.

ing high consistency in question design and content
presentation.

Furthermore, to validate the necessity of visual
information, in addition to the previously men-
tioned manual inspection of image dependency (Ta-
ble 2, Q7), we compared four major VLMs’ perfor-
mance with and without images. Table 3 shows that
all models performed significantly worse in text-
only (w/o) conditions, confirming that our bench-
mark requires visual reasoning capabilities for ac-
curate answers.

4 Experiments

4.1 Evaluation Strategy
Prompting Approach In our experiments, we
design a standardized prompt structure to ensure
consistent model evaluation. Figure 3 presents our
prompt template used during the evaluation process.
To directly assess models’ intrinsic instruction-
following capabilities, we conduct our evaluation
in a zero-shot setting.

Scoring Method To obtain model predictions,
we select the option token ("A", "B", "C", or "D")
that receives the highest probability among the 20
most probable tokens in the model’s output dis-
tribution. If none of the option tokens appear in
these 20 tokens, the prediction is marked as null
and counted as incorrect. We evaluate performance
using accuracy as our primary metric, calculated as
Accuracy = Ncorrect

Ntotal
× 100%, where Ncorrect repre-

sents the number of correctly answered questions,
and Ntotal represents the total number of questions
in our benchmark.

Robust Evaluation Recognizing the sensitivity
of language models to the ordering of options in
multiple-choice questions (Pezeshkpour and Hr-
uschka, 2023), we adopt the CircularEval strategy
proposed by (Liu et al., 2024). Details of this ap-
proach are provided in Appendix C. This strategy
evaluates model responses across four iterations,
each applying a circular shift to the answer choices.
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[Question content]
有以下幾個選項： (Here are the following options:)
A. <Option A>
B. <Option B>
C. <Option C>
D. <Option D>

請直接使用所提供的選項字母作為答案回答。 (Please
answer directly with the option letter provided.)

Figure 3: The Prompt Template for the Zero-shot Setting

A question is considered correctly answered only
if the model provides the accurate answer in all
iterations, ensuring robustness against option posi-
tioning.

4.2 Experimental Setup

Models We evaluate our benchmark using a di-
verse set of vision-language models, including both
open-source and proprietary models. For open-
source models, we include: (1) leading multilin-
gual VLMs; and (2) Chinese-based VLMs, which
are VLMs that integrate large language models de-
veloped in countries where Chinese is the native
language. We also include different versions from
a proprietary model series. A comprehensive list
of the evaluated models and their specifications is
provided in Table 9(Appendix D).

Implementation Details Proprietary models are
evaluated through OpenAI’s API, while open-
source models are deployed in containers using
the vLLM framework (Kwon et al., 2023). This
setup maintains API consistency across all evalua-
tions, facilitating fair comparisons. Due to API con-
straints, we can only access the 20 most probable to-
kens from the model’s output distribution. All open-
source models are hosted on DGX-1 V100 GPUs.
Our evaluation pipeline is built upon lmms-eval1

with modifications to accommodate our experimen-
tal requirements. Detailed implementation infor-
mation, including chat completion parameters and
model deployment configurations, is provided in
Appendix D.

4.3 Results

We evaluate eleven VLMs and present their perfor-
mance in three aspects. Table 4 shows the over-
all performance and results on two question types:
Recognition and Reasoning. We further exam-
ine model performance across different topics for

1https://github.com/EvolvingLMMs-Lab/
lmms-eval

Model Overall Recognition Reasoning

Phi3.5-Vision-Instruct 29.95 33.80 26.10
Llama-3.2-11B 33.10 46.80 19.40
Llama-3.2-90B 51.60 61.80 41.40
LLaVA-v1.6-mistral-7B 28.90 33.50 24.30
LLaVA-v1.6-34B 49.50 57.80 41.20
InternVL2-8B 60.45 71.80 49.10
InternVL2-76B 64.25 75.90 52.60
Qwen2-VL-7B 65.35 79.40 51.30
Qwen2-VL-72B 74.95 83.70 66.20
GPT-4o 61.70 73.60 49.80
GPT-4o-mini 50.05 59.80 40.30

Table 4: Performance (in Accuracy, %) Comparison on
Overall Performance and Two Question Types: Recog-
nition and Reasoning

Recognition (Table 5) and Reasoning (Table 7).
For more detailed analysis, we break down the
performance by subtopics; complete results are in
Appendix E.

5 Analysis

5.1 Recognition and Reasoning Performance

Table 4 shows the performance variations across
models in recognition and reasoning tasks re-
lated to Taiwan. Among the evaluated models,
Qwen2-VL-72B demonstrates the highest overall
score (74.95), significantly outperforming other
models in both recognition (83.70) and reasoning
(66.20). This indicates its robust capability to han-
dle diverse knowledge-intensive tasks. Conversely,
smaller models, such as LLaVA-v1.6-mistral-7B
and Phi3.5-Vision-Instruct, exhibit lower scores
in both categories, suggesting that model size and
architectural sophistication are critical for domain-
specific generalization.

Generally, model performance tends to scale
with size, with larger models typically outperform-
ing smaller ones. However, the results reveal
an exception to this trend: Qwen2-VL-7B and
InternVL2-8B both outperform larger models such
as LLaVA-v1.6-34B and Llama-3.2-90B in both
recognition and reasoning tasks. This suggests that,
within our benchmark, InternVL2 and Qwen ex-
hibit superior capabilities in both cognitive tasks
and Taiwan-specific reasoning, demonstrating a
clear advantage over Llama and LLaVA despite
their smaller scale.

5.2 Recognition Questions

Recognition questions in the Taiwan Vision Bench-
mark test models on identifying Taiwan-specific

5
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Model S&S Att Food Trans C&A Pol Geo Spo F&F His Ent DN ODL
Phi3.5-Vision-Instruct 34.82 22.78 32.56 37.74 35.85 20.00 35.71 45.00 26.37 20.00 31.58 47.92 42.86
Llama-3.2-11B 55.87 35.44 42.79 49.06 33.96 37.50 35.71 65.00 34.07 40.00 55.26 64.58 34.29
Llama-3.2-90B 68.83 46.84 62.79 62.26 62.26 50.00 60.71 65.00 46.15 20.00 71.05 73.96 54.29
LLaVA-v1.6-mistral-7B 35.63 20.25 31.16 50.94 26.42 25.00 21.43 30.00 30.77 20.00 42.11 47.92 28.57
LLaVA-v1.6-34B 57.49 55.70 57.21 67.92 54.72 45.00 60.71 65.00 48.35 20.00 57.89 72.92 54.29
InternVL2-8B 82.59 60.76 65.12 71.70 77.36 67.50 75.00 75.00 62.64 60.00 71.05 72.92 77.14
InternVL2-76B 82.59 68.35 73.49 71.70 84.91 60.00 67.86 90.00 63.74 60.00 84.21 82.29 77.14
Qwen2-VL-7B 87.45 68.35 76.28 77.36 75.47 82.50 89.29 90.00 67.03 80.00 81.58 79.17 88.57
Qwen2-VL-72B 89.88 78.48 82.79 73.58 88.68 90.00 89.29 90.00 68.13 80.00 84.21 84.38 88.57
GPT-4o 76.52 72.15 77.21 67.92 73.58 62.50 85.71 85.00 59.34 80.00 76.32 77.08 62.86
GPT-4o-mini 68.42 53.16 58.60 60.38 49.06 57.50 60.71 70.00 48.35 60.00 57.89 65.62 48.57

Table 5: Performances of recognition questions across different models and topics, including Symbols and Signs
(S&S), Attractions (Att), Food, Transportation (Trans), Culture and Arts (C&A), Politics (Pol), Geography (Geo),
Sports (Spo), Flora and Fauna (F&F), History (His), Entertainment (Ent), Daily Necessities (DN), and Other Daily
Life (ODL). All results are reported in Accuracy (%).

visual elements like local cuisine, transportation,
native ecology, and cultural artifacts. These tasks
focus on precise object detection without requiring
advanced contextual reasoning.

General Patterns and High-Performing Topics
Models performed best in visually distinct and
simpler categories like Transportation, Symbols
and Signs, and Sports. Qwen2-VL-72B excelled,
achieving over 89% in Geography and Symbols
and Signs, while InternVL2-76B also performed
well, particularly in Symbols and Signs (82.59%)
and Daily Necessities (82.29%). Table 5 high-
lights Qwen2-VL-72B’s dominance and InternVL’s
strength. Categories like Food and Daily Necessi-
ties further show models’ effectiveness in recogniz-
ing familiar objects. The high accuracy of Qwen2-
VL and InternVL models reflects their robust archi-
tectures and multilingual training, enabling strong
performance with Traditional Chinese text.

Challenging Topics Across Models Despite
overall progress in recognition tasks, certain top-
ics posed significant challenges, particularly those
requiring nuanced cultural understanding or visual
differentiation. Categories such as Politics, Flora
and Fauna, and History consistently recorded lower
accuracy, with models like Phi3.5-Vision-Instruct
scoring as low as 20% in Politics. Table 5 shows
a pronounced dip in performance for smaller and
less advanced models like LLaVA-v1.6-mistral-7B
across complex topics. Text-heavy categories, such
as Politics and Culture and Arts, were particularly
difficult for models without some cultural knowl-
edge of Taiwanese culture. These findings empha-
size the need for enriched cultural datasets and
improved linguistic understanding to enhance per-
formance in these challenging areas.

Comparison of Models The Qwen2-VL models
outperformed others in recognition tasks, with the
72B model excelling in Politics (90.00%), Geogra-
phy (89.29%), and Culture and Arts (88.68%). The
smaller 7B version also performed well in visually
distinct areas like Symbols and Signs (87.45%).
InternVL models were balanced, with the 76B
model strong in Symbols and Signs (82.59%) and
Daily Necessities (82.29%) but slightly behind
Qwen2 in nuanced tasks. GPT models excelled in
reasoning-heavy areas like History (80.00%) and
Sports (85.00%) but struggled in visual categories,
especially smaller versions. LLaVA models, even
the larger 34B version, lagged in nuanced areas like
Politics (45.00%). Overall, Qwen2-VL led in ac-
curacy, highlighting the importance of model size
and training depth.

Model w/ OCR w/o OCR
Phi3.5-Vision-Instruct 31.56 34.95
Llama-3.2-11B 47.20 46.60
Llama-3.2-90B 59.59 62.93
LLaVA-v1.6-mistral-7B 23.89 38.43
LLaVA-v1.6-34B 49.26 62.18
InternVL2-8B 84.96 65.05
InternVL2-76B 83.19 72.16
Qwen2-VL-7B 92.63 72.62
Qwen2-VL-72B 93.51 78.67
GPT-4o 75.81 72.47
GPT-4o-mini 63.72 57.79

Table 6: Performances of Recognition Task with and
without OCR, reported in Accuracy (%)

OCR and Text Recognition As shown in Table 6
the OCR capabilities of the Phi, Llama, and GPT
series models are similar to their performance in
general QA tasks, showing no significant differ-
entiation. In contrast, the LLaVA series struggles
noticeably with OCR-related questions. Notably,
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Model S&S Att Food Trans C&A Pol Geo Spo F&F His Ent DN ODL
Phi3.5-Vision-Instruct 31.34 24.24 20.79 25.45 30.86 23.64 23.29 39.39 25.35 20.41 27.27 30.77 19.61
Llama-3.2-11B 26.37 15.15 17.33 20.00 20.99 7.27 10.96 36.36 11.27 14.29 34.09 23.08 13.73
Llama-3.2-90B 54.23 30.30 38.61 40.00 39.51 27.27 20.55 51.52 40.85 40.82 45.45 53.85 37.25
LLaVA-v1.6-mistral-7B 23.88 33.33 21.78 25.45 25.93 21.82 17.81 42.42 29.58 22.45 27.27 26.92 15.69
LLaVA-v1.6-34B 48.76 36.36 42.08 43.64 40.74 36.36 26.03 48.48 43.66 36.73 36.36 46.15 31.37
InternVL2-8B 58.21 45.45 45.05 60.00 54.32 45.45 32.88 60.61 33.80 42.86 54.55 57.69 45.10
InternVL2-76B 62.19 33.33 45.05 61.82 58.02 49.09 39.73 54.55 49.30 48.98 63.64 61.54 49.02
Qwen2-VL-7B 65.67 36.36 45.54 56.36 51.85 47.27 39.73 60.61 42.25 42.86 56.82 63.46 39.22
Qwen2-VL-72B 76.12 57.58 65.84 63.64 69.14 70.91 52.05 72.73 50.70 67.35 65.91 73.08 56.86
GPT-4o 60.20 42.42 45.54 47.27 53.09 52.73 41.10 51.52 40.85 42.86 59.09 57.69 39.22
GPT-4o-mini 52.74 30.30 37.13 47.27 48.15 30.91 30.14 45.45 29.58 30.61 43.18 42.31 31.37

Table 7: Performances of reasoning questions across different models and topics, including Symbols and Signs
(S&S), Attractions (Att), Food, Transportation (Trans), Culture and Arts (C&A), Politics (Pol), Geography (Geo),
Sports (Spo), Flora and Fauna (F&F), History (His), Entertainment (Ent), Daily Necessities (DN), and Other Daily
Life (ODL). All results are reported in Accuracy (%).

the InternVL2 and Qwen models perform better on
OCR tasks than on general QA, suggesting a strong
specialization. Given that our benchmark primar-
ily consists of Traditional Chinese OCR tasks, we
speculate that InternVL2 and Qwen were trained
with more extensive Traditional Chinese OCR data
compared to other models.

5.3 Reasoning Questions

Reasoning questions required models to interpret
visual elements and apply external knowledge, such
as culture or history, to answer questions beyond
the image content. Unlike Recognition tasks, these
questions tested deeper, abstract understanding,
posing unique challenges for VLMs.

General Patterns and High-Performing Topics
Reasoning tasks revealed significant variation in
model performance. Categories like Transportation,
Symbols and Signs, and Daily Necessities were
strengths for larger models. Qwen2-VL-72B led
across the board, achieving top scores in Symbols
and Signs (76.12%), Politics (70.91%), and Daily
Necessities (73.08%). InternVL2-76B also per-
formed well, excelling in Transportation (61.82%)
and Culture and Arts (58.02%). Other models like
GPT-4o showed strength in reasoning-intensive top-
ics such as Politics (52.73%), but struggled in more
visually complex tasks. Table 7 highlights Qwen2-
VL-72B’s dominance across reasoning tasks.

Challenging Topics Across Models Topics re-
quiring cultural or linguistic reasoning, such as
Politics, Flora and Fauna, and History, were diffi-
cult for most models. Smaller models like Phi3.5-
Vision-Instruct and Llama-3.2-11B scored poorly
in these areas, with accuracy as low as 14.29% in
History and 7.24% in Politics, respectively. Even

intermediate models like LLaVA-v1.6-34B strug-
gled in nuanced reasoning, achieving only 36.36%
in Politics, emphasizing a need for better Taiwanese
linguistic and cultural training.

Comparison of Models Qwen2-VL-72B out-
performed all others, achieving exceptional ac-
curacy in reasoning categories like Culture and
Arts (69.14%), Geography (52.05%), and Poli-
tics (70.91%). Its smaller version, Qwen2-VL-
7B, maintained competitive scores in areas like
Daily Necessities (63.46%) and Symbols and Signs
(65.67%). InternVL2-76B offered balanced re-
sults across most tasks, while GPT-4o excelled in
text-heavy reasoning but fell short in visual topics.
Smaller models like LLaVA consistently underper-
formed, demonstrating the importance of scale and
training diversity.

Analysis of Types of Reasoning Questions
Model size generally correlates strongly with
reasoning ability, a trend also observed within
the same model series in Figure 4. However,
InternVL2-8B and Qwen2-VL-7B, despite being
smaller models, outperform larger models such as
LLaVA-34B and Llama-90B in reasoning tasks,
an unexpected result. Across our types of reason-
ing questions, Qwen2-VL-72B consistently demon-
strate a deeper understanding of Taiwan-specific
content compared to other models.

5.4 Model Analysis and Insights

Analysis of Chinese-based Model In Figure 5,
we analyze base models, where “O” represents
Chinese-based models and “X” represents non-
Chinese-based models. The choice of base model
has a significant impact on our TaiwanVQA bench-
mark. Chinese-based models excel in recognition
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Figure 4: Analysis of Types of Reasoning Questions

Figure 5: The Impact of Base Model Selection: Com-
paring Chinese-Based (“O”) and Non-Chinese-Based
(“X”) Models

tasks, while also outperforming in reasoning tasks
due to their optimization for Chinese semantic un-
derstanding and content-specific pretraining. No-
tably, InternVL2-8B and Qwen2-VL-7B achieve
higher overall scores than Llama-90B, despite their
smaller size.

Impact of Model Size on Accuracy The rela-
tionship between model size and overall accuracy
underscores the significant impact of scale on per-
formance. Larger models, such as Qwen2-VL-72B
and InternVL2-76B, consistently achieved the high-
est overall accuracy, exceeding 70% and 60% accu-
racy, respectively. In contrast, smaller models like
Phi3.5-Vision-Instruct and LLaVA-v1.6-mistral-7B
struggled to surpass 30% accuracy, demonstrating

a clear limitation in their ability to handle com-
plex tasks. Notably, mid-sized models such as
LLaVA-v1.6-34B showed moderate improvements
in accuracy (around 50%), indicating that scal-
ing up provides diminishing but still significant
returns in accuracy. This trend emphasizes the im-
portance of large-scale architectures and extensive
training datasets for achieving state-of-the-art per-
formance in multimodal recognition and reasoning
tasks, though some smaller models still demon-
strate reasonable accuracy.

6 Conclusion

In this paper, we introduced TaiwanVQA, a novel
visual question answering benchmark specifically
designed to evaluate the capabilities of VLMs in
understanding and reasoning about Taiwan-specific
content. TaiwanVQA consists of 1,000 images and
2,000 questions covering a diverse range of topics
relevant to Taiwanese daily life and culture, includ-
ing local cuisine, public signage, tourist attractions,
and local flora and fauna. We categorized the ques-
tions into recognition and reasoning tasks, further
sub-classifying the reasoning questions based on
the level of external knowledge required.

Our extensive experiments with state-of-the-art
models, including GPT-4 (OpenAI, 2023), revealed
significant limitations in current VLMs when deal-
ing with culturally specific content. The results
demonstrated that while models perform reason-
ably well on recognition tasks, their performance
on reasoning tasks that require deeper cultural un-
derstanding is substantially lower. This highlights
the need for more culturally diverse training data
and improved model architectures that can better in-
tegrate visual and textual information in culturally
nuanced contexts.

By providing the first VQA benchmark that fo-
cuses on culturally rich content specific to Taiwan,
TaiwanVQA fills a critical gap in the evaluation of
VLMs. We believe this benchmark will contribute
to the development of more inclusive and cultur-
ally aware AI models, ultimately facilitating their
deployment in diverse real-world scenarios (Nayak
et al., 2024).

7 Limitations

While TaiwanVQA makes significant strides in
evaluating VLMs on culturally specific content,
several limitations exist in our current work. First,
due to technical challenges during the experimen-
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tation phase, we were unable to successfully in-
fer and evaluate some models. These models are
marked with an asterisk (*) or dagger (†) in our
experimental settings and results (see Appendix D
and E). The inability to include these models may
affect the comprehensiveness of our evaluation. In
future work, we plan to resolve these technical is-
sues and include a broader range of models in our
analysis.

Second, the dataset, though diverse, may not
cover all aspects of Taiwanese culture and daily life.
Certain niche or less visually represented cultural
elements might be underrepresented, potentially
limiting the assessment of models’ understanding
in those areas.

Third, the dataset primarily focuses on visual
content accompanied by textual questions in Tra-
ditional Chinese. This language-specific focus
might make it challenging to generalize the findings
to other underrepresented languages and cultures
without additional adaptation.

Finally, our current evaluation is conducted in
a zero-shot setting without fine-tuning on Taiwan-
specific data. While this approach highlights in-
herent model capabilities, it does not account for
improvements that might be achieved through tar-
geted training or domain-specific adaptation (Li
et al., 2024a).
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A Annotation Guideline

In this section we demonstrate the detail annotation
guideline we asked annotator to do. There are three
steps in our annotation step. First, we give anno-
tators an general guideline and asked them to take
a picture with Taiwan information. Second, we
asked annotator to generate a recognition question.
Final, we asked annotator to generate a reasoning
question.

A.1 General Guideline
Before the annotators begin annotating data, we
first provided them with a general guideline. This
guideline asked the annotator follow the rules to
write the recognition question and choices, includ-
ing:

• The primary purpose of data collection: to col-
lect images and questions featuring elements
specific to Taiwan.

• Ensuring that the language used in questions
reflects common terms and expressions used
in Taiwan.

• Ensuring that annotators do not violate any
legal issues, such as those related to privacy
or copyright.

After reading the overall guideline, the annota-
tor should upload an image containing a Taiwan-
specific object.

A.2 Recognition Question
Next, we asked them to generate a recognition ques-
tion and corresponding multiple-choice answers.
To help annotators understand the guidelines, we
provide clear examples and detailed explanations,
ensuring both the questions and answer choices
meet the required conditions. This guideline intro-
duces key concepts of writing a recognition ques-
tion, including:

• The definition of a recognition question: ques-
tions that assess whether the model can iden-
tify and name the object in an image without
requiring analysis or inference.

• Emphasize that the question should be answer-
able solely based on all visible text or clearly
identifiable objects in the image, and that the
designed options do not include these visi-
ble texts or identifiable objects as possible
answers.

• Ensure that questions cannot be answered
without actually viewing the image.

• If there are multiple objects in the image, spec-
ify exactly which person or object to identify
to avoid overly simplistic questions.

• Include misleading choices to make it harder
for the model to select the correct answer, in-
creasing the challenge.

• No length limit for questions and options.

Additionally, we asked annotators to classify
whether the recognition question required ORC
capability or not.

Once the question is written, annotators are re-
quired to categorize the question’s topic. The topics
definition is shown in Table 8. This helps in further
analyzing the questions and ensuring data quality.

A.3 Reasoning Question
After writing a recognition question, annotator
should write a reasoning question with the guide-
line. This guideline introduces key concepts of
writing a reasoning question, including:

• The definition of a reasoning question: ques-
tions that require not only identifying the ob-
ject but also understanding additional informa-
tion, such as quantity, use, location, relative
position, physical properties, or price, to pro-
vide an answer.

• Ensure that questions cannot be answered
without actually viewing the image.

• No length limit for questions and options.

Once the reasoning question is written, we also
asked the annotator to classify the question topic,
similar to the recognition question. Additionally,
we asked them to further label the question by iden-
tifying the capabilities required to answer it. The
annotator should also indicate whether the question
requires information about current events.
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Topic Subtopic Definition
Symbols and Signs Recognition and understanding of symbols, like

priority seating, restrooms, no smoking, etc.
Trademarks and Store
Signs

Registered trademarks and store signs, such as
FamilyMart, Louisa Coffee, YongChing Real Estate,
Hua Nan Bank, etc.

Public Notices and
Announcements

Images or text providing information, such as
advertisements, banners, usage instructions, and
rules.

Instruction Signs Signs indicating rules or directions, like no smoking,
emergency exit, restrooms, priority seating, parking,
turn off devices, etc.

Attractions Including Taiwan’s natural and cultural landscapes.
Natural Scenery Includes Taiwan’s mountains, coastlines, lakes, etc.,

such as Alishan, Taroko National Park, etc.
Cultural Landmarks Covers Taiwan’s historical sites, architectural

landmarks, and other non-natural tourist spots, such
as Anping Fort in Tainan, Chiang Kai-shek
Memorial Hall in Taipei, National Palace Museum,
Jiufen Old Street.

Food Including content related to Taiwan’s culinary
culture.

Cuisine and Ingredients Names of dishes and their ingredients, including
distinctive foods, components, and garnishes on
plates.

Dietary Customs and
Taboos

Features of Taiwan’s daily dietary habits and
customs, including combinations and taboos, like
breakfast culture, adding cilantro, etc.

Menus Judging information based on menu or price list
content; images only show text, no actual dishes.

Cuisine Origin Judging a dish’s origin by time or location, or
associating it with the culture that originated it.

Transportation Including content related to Taiwan’s transportation.
Transit Systems Includes Taiwan’s metro, train, and bus systems,

their operations and features.
Traffic Signs Covers Taiwan’s traffic lights, violation checks,

driving tests, etc.
Culture and Arts Including content related to Taiwan’s culture and

arts.
Folklore and Beliefs All things related to culture and religion, including

Taiwan’s festivals, customs, and taboos like the
Mid-Autumn Festival, Dragon Boat Festival,
marriage and funeral traditions, religious buildings
and decorations, gods, religious practices, temple
culture, folk beliefs like Mazu worship.

Indigenous Culture Taiwan’s indigenous customs, languages, and arts,
such as those of the Amis and Atayal tribes.

Artistic Activities Activities like art exhibitions, cultural artifacts,
musical instruments, operas, etc.

Politics Including content related to Taiwan’s politics.

12

68



Topic Subtopic Definition
Political System Taiwan’s political system and electoral system, such

as central and local government bodies, legislative
election systems, etc.

Political Events Activities like elections and social movements.
Political Figures and
Parties

Contemporary Taiwanese political figures or parties,
such as Lai Ching-te, Chu Li-lun, Taiwan People’s
Party.

Geography Including content related to Taiwan’s geography.
Natural Geography Taiwan’s landforms and natural features, such as the

Central Mountain Range and the eastern coast.
Human Geography Taiwan’s administrative divisions, place name

origins, population distribution, industry distribution,
etc.

Sports Including content related to Taiwan’s sports and
athletics.

Sports Types of sports and sports venues, such as tennis,
badminton, baseball fields.

Athletes Taiwanese athletes, such as Chuang Chih-yuan, Tai
Tzu-ying, Wang Chien-ming.

Teams and Mascots Taiwan’s professional or amateur teams and mascots,
such as the Uni Lions, Rakuten Monkeys, Monkeys
Kids, Ryan.

Flora and Fauna Including Taiwan’s common flora and fauna.
Animals Common animal species in Taiwan, such as the

Taiwan blue magpie and the Formosan landlocked
salmon.

Plants Common plant species in Taiwan, such as the
blackboard tree and large flower impatiens.

History Covers historical events (e.g., the February 28
Incident, Kaohsiung Incident) and figures who
impacted Taiwanese history, such as Chiang
Ching-kuo, Lee Teng-hui.

Entertainment Including content related to Taiwan’s entertainment.
Films and TV Shows Movies, TV series, related events, and venues.
Music Industry Music genres, important music events, music works,

and related venues.
Gaming Industry Games and industry development.

Daily Necessities Common items or tools with specific purposes in
daily life, requiring identification of the items and
their possible uses or purposes.

Other Daily Life Other content related to the daily lifestyle and habits
of Taiwanese people.

Table 8: Definition of Each Topic
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B Topic Definition and Classification
Prompt

In this section, we show the detail of the definition
of the topics and the analysis of it.

B.1 Definition

We classify the questions into 13 topics and
27 subtopics. The definition of the topics and
subtopics is shown in Table 8.

B.2 Classification Prompt

In this section, we present the detailed prompt used
to instruct GPT-4o to classify question topics.

The system prompt is shown in Figure 6. It in-
cludes a role-play request, asking GPT-4o to act
as an assistant with a deep understanding of Tai-
wanese culture. Furthermore, we instruct GPT-4o
to respond in a specific format, which includes both
the topic and subtopic of the question. Additionally,
we emphasize that GPT-4o should avoid selecting
subtopics that do not align with the chosen topic.

你是一個專業的主題分類助理，且十分理解台灣的日常
生活文化。請根據以下的分類標準，為每個問題選擇最
適合的主題類別和子類別。

<Topics Definition>

分類標準：

-若選擇 "交通標示"作為子類別，主題必須是 "交通"。
- 若選擇 "文宣與告示" 作為子類別，主題必須是 "標誌
標示"。
注意：
1. 部分主題沒有子類別，這種情況下只需提供主題即
可。
2. 子類別必須屬於其主題，例如：
主題：[主題名稱]
子類別：[子類別名稱]（若該主題沒有子類別則此行可
省略）。
回答格式：
-主題：[主題名稱]。
-子類別：[子類別名稱]。

Figure 6: System Prompt for Classifying Question Top-
ics

The user prompt is shown in Figure 7. This
section directly includes the question, the options,
and the correct answer.

C Evaluation Strategy

C.1 Robust Evaluation

To ensure robust evaluation of model performance
on multiple-choice questions, we implement the

問題：<question>
選項：
A. <option A>
B. <option B>
C. <option C>
D. <option D>
答案：<correct option>

Figure 7: User Prompt for Classifying Question Topics

Original Question:

請問照片拍攝的是以下哪種台灣小吃？ (Which
Taiwanese snack is shown in the photo?)
A.蚵仔煎 (Oyster Omelette)
B.地瓜球 (Sweet Potato Balls)
C.牛肉湯 (Beef Soup)
D.蚵仔麵線 (Oyster Vermicelli)
Answer: D

Four Iterations with Circular Shifts:
1: A.蚵仔煎 B.地瓜球 C.牛肉湯 D.蚵仔麵線→ D
2: A.地瓜球 B.牛肉湯 C.蚵仔麵線 D.蚵仔煎→ C
3: A.牛肉湯 B.蚵仔麵線 C.蚵仔煎 D.地瓜球→ B
4: A.蚵仔麵線 B.蚵仔煎 C.地瓜球 D.牛肉湯→ A

Figure 8: CircularEval example. A model must correctly
track the target answer (Oyster Vermicelli) through all
shifted positions to be considered successful.

CircularEval strategy as illustrated in Figure 8.
This approach addresses potential biases in model
responses due to option positioning.

Consider an example where the model is asked
to identify a Taiwanese snack from an image. The
original question is presented with four options
(A: Oyster Omelette, B: Sweet Potato Balls, C:
Beef Soup, D: Oyster Vermicelli), where the cor-
rect answer is "Oyster Vermicelli" (Option D). Cir-
cularEval then creates four iterations by circularly
shifting these options:

• Original: The correct answer "Oyster Vermi-
celli" is at position D

• First shift: The answer moves to position C

• Second shift: The answer moves to position B

• Third shift: The answer moves to position A

For a model’s prediction to be considered cor-
rect, it must accurately track the answer through all
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Model Language Model Vision Encoder Size (B)

Phi3.5-Vision-Instruct Phi-3.5-mini-instruct CLIP ViT-L/14 4.2
Llama-3.2-11B Llama-3.1-8B ViT–H/14 11
Llama-3.2-90B Llama-3.1-70B ViT–H/14 90
LLaVA-v1.6-mistral-7B Mistral-7B CLIP ViT-L/14 7
LLaVA-v1.6-34B Nous-Hermes-2-Yi-34B CLIP ViT-L/14 34
InternVL2-8B InternLM2.5-7B-Chat InternViT-300M 8
InternVL2-76B Hermes-2-Theta-Llama-3-70B InternViT-6B 76
Qwen2-VL-7B Qwen2-7B CLIP ViT-L/14 7
Qwen2-VL-72B Qwen2-72B CLIP ViT-L/14 72

GPT-4o – – –
GPT-4o-mini – – –

Table 9: Model specifications of evaluated VLMs. Size is measured in billions of parameters (B).

four positions (D→C→B→A). This methodology
ensures that the model’s performance is based on
genuine understanding rather than position-based
biases or patterns.

D Experimental Setup

D.1 Models

We evaluate a diverse set of vision-language models
in our experiments, categorized into three groups
based on their primary language capabilities and
model characteristics.

The first category includes leading multilingual
VLMs:

• Phi3.5-Vision-Instruct: A lightweight model
from Microsoft.

• Llama-based models: Including Llama-3.2-
11B and Llama-3.2-90B.

• LLaVA-v1.6-mistral-7B: Designed for multi-
lingual tasks.

The second category comprises Chinese-based
VLMs:

• InternVL2 series: Consisting of InternVL2-
8B and InternVL2-76B.

• Qwen2-VL series: Including Qwen2-VL-7B
and Qwen2-VL-72B.

• LLaVA-v1.6-34B: Tailored for Chinese lan-
guage understanding.

The third category consists of proprietary mod-
els:

Parameter Value Description
logprobs True Return log prob. of out-

put tokens
top_logprobs 20 Return top 20 likely to-

kens
temperature 0 Deterministic sampling

Table 10: Chat completion parameters for model infer-
ence.

• GPT-4o series: This includes GPT-4o and
GPT-4o-mini, proprietary models whose ar-
chitectural details are not publicly disclosed.

Table 9 presents the specifications of all evalu-
ated models. For open-source models, we detail
their language models, vision encoders, and total
parameters in billions (B). The size ranges from
4.2B (Phi3.5) to 90B (Llama-3.2-90B) parameters,
offering a comprehensive evaluation across differ-
ent model scales. For proprietary models in the
GPT-4o series, these specifications are not publicly
available and thus marked with dashes.

D.2 Implementation Details
In this subsection, we present our experimental
configurations for both model inference and de-
ployment. Table 10 shows the chat completion
parameters used consistently across all evaluations.
For serving open-source models, we utilize the
vLLM framework (Kwon et al., 2023) to evaluate
the performance and scalability of the serving in-
frastructure under different configurations, which
are detailed in Table 11.

The evaluated models include a wide range of
vision-language models such as LLaVA, Qwen-
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VL, InternVL, among others. For each model, key
configuration parameters were recorded:

• Maximum Model Length (max-model-len):
The maximum sequence length supported by
the model.

• Tensor Parallel Size
(tensor-parallel-size): The number
of GPUs allocated for parallel inference.

• GPU Memory Utilization: The proportion
of GPU memory utilized during serving.

• Batching Parameters:

– Maximum Number of Batched Tokens:
The maximum number of tokens that can
be processed in a single batch.

– Maximum Number of Sequences: The
maximum number of sequences pro-
cessed in parallel.

• Swap Space: Indicates whether disk-based
swap space is enabled to handle memory over-
flow scenarios.

• Worker Configuration (worker-use-ray):
Specifies whether Ray-based worker manage-
ment is employed for distributed serving.

To clarify the model status during the experi-
ments:

• Models currently in progress or pending
evaluation are marked with ‘†‘ before their
names.

• Models encountering errors during serving
are marked with ‘*‘ before their names.

The vLLM framework was used for all exper-
iments. This framework is optimized for high-
throughput inference with features such as:

• Token-level pipelining to maximize GPU uti-
lization.

• Tensor-parallel support for efficient multi-
GPU inference.

• Dynamic batching for reducing latency and
improving throughput.

Table 11 provides a detailed summary of the ex-
periment configurations and results. These settings
can serve as a practical reference for deploying
vision-language models in research or production
environments.

E Experiment Results

Detailed performance results for recognition and
reasoning questions across various subtopics are
presented in Table 12 and Table 13.
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Model Symbols & Signs Attractions Food Transport Culture & Arts Politics
T&S PN IS NS CL C&I Men CO TS TrS F&B IC AA PS PE PFP

Phi3.5-Vision 33.87 29.73 44.90 15.79 25.00 33.51 30.00 0.00 47.06 21.05 34.48 25.00 43.75 33.33 44.44 4.55
Llama-3.2-11B 67.74 36.49 55.10 36.84 35.00 45.55 20.00 25.00 61.76 26.32 27.59 25.00 50.00 66.67 55.56 18.18
Llama-3.2-90B 71.77 62.16 71.43 36.84 50.00 63.87 55.00 50.00 67.65 52.63 55.17 50.00 81.25 88.89 66.67 27.27
LLaVA-v1.6-m-7B 30.65 31.08 55.10 15.79 21.67 31.41 35.00 0.00 55.88 42.11 27.59 0.00 37.50 55.56 44.44 4.55
LLaVA-v1.6-34B 52.42 58.11 69.39 57.89 55.00 60.73 35.00 0.00 73.53 57.89 51.72 25.00 75.00 55.56 55.56 36.36
InternVL2-8B 84.68 81.08 79.59 63.16 60.00 65.97 55.00 75.00 76.47 63.16 72.41 75.00 87.50 88.89 88.89 50.00
InternVL2-76B 87.90 75.68 79.59 57.89 71.67 76.44 45.00 75.00 79.41 57.89 79.31 87.50 93.75 88.89 88.89 36.36
Qwen2-VL-7B 93.55 82.43 79.59 57.89 71.67 75.39 85.00 75.00 85.29 63.16 75.86 50.00 87.50 100.00 88.89 72.73
Qwen2-VL-72B 92.74 85.14 89.80 68.42 81.67 83.77 75.00 75.00 82.35 57.89 93.10 75.00 87.50 100.00 100.00 81.82
GPT-4o 87.90 58.11 75.51 68.42 73.33 81.68 35.00 75.00 76.47 52.63 65.52 87.50 81.25 88.89 88.89 40.91
GPT-4o-mini 72.58 62.16 67.35 63.16 50.00 61.78 30.00 50.00 70.59 42.11 37.93 50.00 68.75 88.89 66.67 40.91

Model Geography Sports F&F His Entertainment DN ODL
NG HG SAV Ath T&M Ani Pla His FTS Mus Gam DN ODL

Phi3.5-Vision 50.00 16.67 60.00 25.00 33.33 29.17 23.26 20.00 35.00 50.00 16.67 47.92 42.86
Llama-3.2-11B 37.50 33.33 50.00 75.00 83.33 33.33 34.88 40.00 55.00 66.67 50.00 64.58 34.29
Llama-3.2-90B 68.75 50.00 70.00 25.00 83.33 50.00 41.86 20.00 80.00 50.00 66.67 73.96 54.29
LLaVA-v1.6-m-7B 37.50 0.00 20.00 0.00 66.67 31.25 30.23 20.00 55.00 33.33 25.00 47.92 28.57
LLaVA-v1.6-34B 75.00 41.67 70.00 0.00 100.00 45.83 51.16 20.00 60.00 66.67 50.00 72.92 54.29
InternVL2-8B 81.25 66.67 60.00 100.00 83.33 64.58 60.47 60.00 80.00 83.33 50.00 72.92 77.14
InternVL2-76B 68.75 66.67 80.00 100.00 100.00 70.83 55.81 60.00 90.00 83.33 75.00 82.29 77.14
Qwen2-VL-7B 87.50 91.67 80.00 100.00 100.00 64.58 69.77 80.00 85.00 66.67 83.33 79.17 88.57
Qwen2-VL-72B 87.50 91.67 80.00 100.00 100.00 62.50 74.42 80.00 90.00 66.67 83.33 84.38 88.57
GPT-4o 87.50 83.33 70.00 100.00 100.00 56.25 62.79 80.00 75.00 66.67 83.33 77.08 62.86
GPT-4o-mini 62.50 58.33 50.00 75.00 100.00 47.92 48.84 60.00 50.00 66.67 66.67 65.62 48.57

Table 12:

Subtopic Performance of Recognition Questions (Accuracy, %).
Subtopics: T&S=Trademarks & Store Signs, PN=Public Notices & Announcements, IS=Instruction Signs,
NS=Natural Scenery, CL=Cultural Landmarks, C&I=Cuisine & Ingredients, Men=Menus, CO=Cuisine Origin,
TS=Transit Systems, TrS=Traffic Signs, F&B=Folklore & Beliefs, IC=Indigenous Culture, AA=Artistic Activities,
PS=Political System , PE=Political Events, PFP=Political Figures & Parties, NG=Natural Geography, HG=Human
Geography, SAV=Sports Activities & Venues, Ath=Athletes, T&M=Teams & Mascots, Ani=Animals, Pla=Plants,
His=History, FTS=Films & TV Shows, Mus=Music, Gam=Gaming, DN=Daily Necessities, ODL=Other Daily Life.
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Model Symbols & Signs Attractions Food Transport Culture & Arts
T&S PN IS NS CL C&I DCT Men CO TS TrS F&B IC AA

Phi3.5-Vision 30.00 26.74 42.22 33.33 16.67 21.59 17.78 24.32 18.75 28.57 20.00 39.53 23.08 16.67
Llama-3.2-11B 24.29 18.60 44.44 20.00 11.11 14.77 24.44 16.22 15.62 25.71 10.00 27.91 15.38 8.33
Llama-3.2-90B 52.86 46.51 71.11 20.00 38.89 40.91 48.89 21.62 37.50 45.71 30.00 44.19 23.08 58.33
LLaVA-v1.6-m-7B 27.14 16.28 33.33 33.33 33.33 19.32 33.33 16.22 18.75 25.71 25.00 30.23 15.38 33.33
LLaVA-v1.6-34B 47.14 46.51 55.56 33.33 38.89 44.32 53.33 16.22 50.00 45.71 40.00 44.19 34.62 41.67
InternVL2-8B 54.29 59.30 62.22 46.67 44.44 42.05 51.11 43.24 46.88 62.86 55.00 65.12 42.31 41.67
InternVL2-76B 61.43 60.47 66.67 26.67 38.89 48.86 42.22 37.84 46.88 68.57 50.00 65.12 42.31 66.67
Qwen2-VL-7B 68.57 61.63 68.89 33.33 38.89 47.73 46.67 40.54 43.75 60.00 50.00 55.81 42.31 58.33
Qwen2-VL-72B 74.29 76.74 77.78 53.33 61.11 72.73 57.78 56.76 68.75 68.57 55.00 79.07 53.85 66.67
GPT-4o 61.43 58.14 62.22 46.67 38.89 53.41 55.56 21.62 37.50 51.43 40.00 55.81 42.31 66.67
GPT-4o-mini 55.71 44.19 64.44 26.67 33.33 39.77 46.67 21.62 34.38 42.86 55.00 51.16 38.46 58.33

Model Politics Geography Sports F&F His Entertainment DN ODL
PS PE PFP NG HG SA&V Ath T&M Ani Pla His F&TS Mus Gam DN ODL

Phi3.5-Vision 15.38 61.54 10.34 33.33 19.23 55.56 25.00 18.18 23.68 30.30 20.41 20.00 50.00 33.33 30.77 19.61
Llama-3.2-11B 7.69 23.08 0.00 9.52 11.54 50.00 25.00 18.18 15.79 6.06 14.29 24.00 50.00 46.67 23.08 13.73
Llama-3.2-90B 30.77 46.15 17.24 38.10 13.46 72.22 50.00 18.18 44.74 36.36 40.82 44.00 50.00 46.67 53.85 37.25
LLaVA-v1.6-m-7B 30.77 38.46 10.34 23.81 15.38 61.11 50.00 9.09 28.95 30.30 22.45 24.00 50.00 26.67 26.92 15.69
LLaVA-v1.6-34B 30.77 61.54 27.59 38.10 21.15 66.67 25.00 27.27 44.74 42.42 36.73 24.00 50.00 53.33 46.15 31.37
InternVL2-8B 53.85 76.92 27.59 28.57 34.62 83.33 75.00 18.18 31.58 36.36 42.86 48.00 75.00 60.00 57.69 45.10
InternVL2-76B 69.23 76.92 27.59 47.62 36.54 72.22 50.00 27.27 57.89 39.39 48.98 60.00 50.00 73.33 61.54 49.02
Qwen2-VL-7B 69.23 69.23 27.59 38.10 40.38 77.78 75.00 27.27 39.47 45.45 42.86 48.00 50.00 73.33 63.46 39.22
Qwen2-VL-72B 92.31 76.92 58.62 47.62 53.85 83.33 100.00 45.45 55.26 45.45 67.35 60.00 50.00 80.00 73.08 56.86
GPT-4o 69.23 76.92 34.48 52.38 36.54 77.78 25.00 18.18 52.63 27.27 42.86 56.00 75.00 60.00 57.69 39.22
GPT-4o-mini 53.85 61.54 6.90 23.81 32.69 55.56 50.00 27.27 34.21 24.24 30.61 36.00 50.00 53.33 42.31 31.37

Table 13:

Subtopic Performance of Reasoning Questions (Accuracy, %).
Subtopics: T&S=Trademarks & Store Signs, PN=Public Notices & Announcements, IS=Instruction Signs,
NS=Natural Scenery, CL=Cultural Landmarks, C&I=Cuisine & Ingredients, DCT=Dietary Customs & Taboos,
Men=Menus, CO=Cuisine Origin, TS=Transit Systems, TrS=Traffic Signs, F&B=Folklore & Beliefs, IC=Indigenous
Culture, AA=Artistic Activities, PS=Political System, PE=Political Events, PFP=Political Figures & Parties,
NG=Natural Geography, HG=Human Geography, SA&V=Sports Activities & Venues, Ath=Athletes, T&M=Teams
& Mascots, Ani=Animals, Pla=Plants, His=History, F&TS=Films & TV Shows, Mus=Music, Gam=Gaming,
DN=Daily Necessities, ODL=Other Daily Life.
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Abstract

Visual Question-Answering (VQA) has be-
come key to user experience, particularly after
improved generalization capabilities of Vision-
Language Models (VLMs). But evaluating
VLMs for an application requirement using a
standardized framework in practical settings is
still challenging. This paper aims to solve that
using an end-to-end framework. We present
VQA360 – a novel dataset derived from estab-
lished VQA benchmarks, annotated with task
types, application domains, and knowledge
types, for a comprehensive evaluation. We
also introduce GoEval, a multimodal evalua-
tion metric developed using GPT-4o, achiev-
ing a correlation factor of 56.71% with hu-
man judgments. Our experiments with state-
of-the-art VLMs reveal that no single model
excels universally, thus, making a right choice
a key design decision. Proprietary models such
as Gemini-1.5-Pro and GPT-4o-mini generally
outperform others, but open-source models like
InternVL-2-8B and CogVLM-2-Llama-3-19B
also demonstrate competitive strengths, while
providing additional advantages. Our frame-
work can also be extended to other tasks1.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is the task of answering a question q about an
image I correctly. This field has been faced with
constant challenges in terms of the nature of the
problem. For example, the question q can be about
the image directly (Goyal et al., 2017a; Zhu et al.,
2016; Goyal et al., 2017b), or outside the scope of
the image with external knowledge (Marino et al.,
2019; Schwenk et al., 2022). The images I can be
a photograph, a mathematical chart (Masry et al.,

*Work does not relate to position at Meta.
†Work does not relate to position at Amazon.
1Code and dataset can be found in the following

link: https://github.com/neelabhsinha/vlm-selection-tasks-
domains-knowledge-type.

Figure 1: Examples of VQA360 tasks and their labels for
task types, application domains, and knowledge type in
our dataset.

2022; Li and Tajbakhsh, 2023), a document screen-
shot (Mathew et al., 2021), or more.

Dedicated methods (Zhu et al., 2016; Goyal
et al., 2017b; Kafle and Kanan, 2017) have long
existed to solve different challenges in VQA. But,
with the advancement of Vision-Language mod-
els (VLMs) (Chen et al., 2023; Bai et al., 2023;
Team et al., 2024; OpenAI et al., 2024; Liu et al.,
2023a) in multimodal research, several applications
have started adapting them due to their versatility.
This is because after pre-training (Lin et al., 2024;
Wei et al., 2024) on vast multimodal datasets (Chen
et al., 2015; Thomee et al., 2016; Changpinyo et al.,
2021; Masry et al., 2022; Mathew et al., 2021;
Marino et al., 2019), VLMs can effectively gen-
eralize across various types of images, and can also
incorporate external knowledge beyond the image.

But which VLM to utilize for a given VQA-
based requirement? The complexity of this stems
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from two directions - new VLMs being proposed
and the diverse nature of tasks in VQA. New VLMs
come up every month now (Liu et al., 2023a, 2024;
Bai et al., 2023; team, 2024; Chen et al., 2023,
2024; Wang et al., 2023; Hong et al., 2024), and
they differ in their architecture, training data, train-
ing strategy, size, etc., possessing different capa-
bilites. In addition, users often face technical and
business constraints in terms of compute, mem-
ory, cost of inference, data, and regulatory risks,
which can favor specific VLMs over others. Sec-
ond, tasks may vary from types such as Chart
Question-Answering (Masry et al., 2022) or Docu-
ment Understanding (Mathew et al., 2021), to ap-
plication domains such as Science, or Sports, and
the type of knowledge required, like Geographical
Information, Mathematical Reasoning, and beyond.
For an application that can fall into one or more
such categories, how do you identify the best suited
VLM? How to compare them meaningfully? These
are gaps in existing literature. Technical reports of
VLMs provide benchmarks and comparison, but
they are very theoretical and limited.

To bridge the gap in evaluating VLMs on VQA,
we propose an end-to-end framework that pro-
vides a standardized paradigm for evaluating vision-
language models (VLMs) across three key as-
pects: task type, application domain, and knowl-
edge type. Existing datasets like VQAv2 (Goyal
et al., 2017a), OK-VQA (Marino et al., 2019), and
ChartQA (Masry et al., 2022) offer task instances
for training and evaluation but lack labels for other
practical aspects. Our framework addresses this
by developing and sharing a dataset VQA360 de-
rived from the above benchmarks, where tasks are
also labeled with their application domains and
the knowledge types required for successful com-
pletion, as illustrated in Figure 1, allowing for a
evaluation 360◦ in practical settings. Each task
can have multiple tags for all these aspects. In
addition, traditional NLP evaluation metrics have
been shown to be poorly correlated with human
judgments for generative models (Kamalloo et al.,
2023; Liu et al., 2023b), an issue that extends to
VLM. To address this, we introduce GoEval, a mul-
timodal evaluation metric leveraging GPT-4o (Ope-
nAI et al., 2024), which demonstrates superior
alignment with human judgment compared to exist-
ing metrics. Together, they complement each other
to provide an end-to-end, completely multimodal
evaluation framework. Our framework evaluates 10
variations of 8 VLMs, accommodating diverse re-

quirements such as open-source, resource-efficient,
or privacy-compliant models.

In summary, our aim is to address the following
research questions (RQs): (1) How to compare
VLMs for different types of VQA tasks in practical
settings? (2) How to evaluate those VLM outputs
closely with human judgments? (3) As per current
SOTA, which VLM is suited for which application,
depending on various external constraints?

Our key contributions are as follows:
(i) We release VQA360 - a dataset of VQA tasks

with three labeled aspects: task types, application
domains, and knowledge type, enabling comparison
based on different practical requirements.

(ii) We propose GoEval, which is a multimodal
evaluation metric based on GPT-4o (OpenAI et al.,
2024), and aligns more closely with human judg-
ments for visual question-answering.

(iii) We analyze 10 variants of 8 state-of-the-art
VLMs of different sizes and families, using our
framework to compare their performance.

(iv) Using our analysis, we make recommenda-
tions on the best-suited VLMs for a given applica-
tion requirement under different constraints.

2 VQA360: A Practical Evaluation Dataset

In this section, we discuss our dataset creation steps
we followed in detail, which we propose to utilize
for evaluating VLMs for VQA.

2.1 Source Datasets

To be able to evaluate VLMs in a wide variety
of QA tasks, VQA360 is created from five stan-
dard datasets - VQAv2 (Goyal et al., 2017a), OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), ChartQA (Masry et al., 2022) and
DocumentVQA (Mathew et al., 2021). VQAv2
is an extensive VQA benchmark, while OK-VQA
and A-OKVQA are used primarily for knowledge-
based VQA, where the answer to the question does
not lie within the scope of the image. ChartQA
and DocumentVQA are taken to evaluate the per-
formance of VLMs on questions based on mathe-
matical graphs and charts, and documents, respec-
tively. From the test split of each dataset Dtest, we
take max(|Dtest|, 1145) task instances, randomly
sampled without replacement. 1145 was used as
it is the minimum size of test set among the five
datasets. Thus, our final experimental set contains
5725 task instances, with equal contributions from
each dataset.
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Aspect Considered Tags

Application Domains Anthropology, Formal logic, Economics, History, Law, Government and Politics, Linguistics, Computer
Science, Mathematics, Science, Books, Fiction, Movies, News, Reviews, Justice, Professions, Public
Places, Knowledge Base, Nature, Nutrition and Food, Social Media, Sports

Knowledge Types Commonsense Knowledge, Visual Knowledge, Cultural Knowledge, Geographical Knowledge, Temporal
Knowledge, Social Knowledge, Scientific Knowledge, Technical Knowledge, Mathematical Knowledge,
Literary Knowledge, Other

Table 1: Application domains and knowledge types considered to label all the task instances.

2.2 Instance Tags

Using the dataset mentioned above only allows us
to differentiate based on task types. But there are
more ways in which a practical application can be
classified. To enable that, we also classify VQA360
in two more aspects - application domains, and
knowledge types. This is inspired from a recent
work (Sinha et al., 2024), but adapted to suit this
task. The application domain is the field a task
belongs to, such as history, science, sports, etc., and
the knowledge type is a specific type of knowledge
required, such as geographic, common sense, etc.

Our initial set of tags is crafted manually, with
an aim to achieve a broad spectrum of application
domains and reasoning types. They are specified
in Table 1, and cover a wide range of domains and
knowledge types. We tag each of our task instances
in the dataset with one or more application domains
and knowledge types using the method described
in Figure 2 and discussed in the following.

2.3 Generating Instance Tags

For creating the tags for task types, we
map ChartQA to ‘Chart Understanding’, Doc-
umentVQA to ‘Document Understanding’, A-
OKVQA and OKVQA to ‘Knowledge-based Vi-
sual Question-Answering’ and VQAv2 to ‘Visual
Question-Answering’.

For application domains and knowledge types,
we use gpt-3.5-turbo (Brown et al., 2020; Ope-
nAI, 2023). To correctly generate instance tags,
we require key features of the image and question,
and also need to eliminate less useful information
from the image to avoid confusions. To achieve
this, following a recent work (Fu et al., 2023), we
generate captions of images from VIT-GPT22, and
object tags from the Azure Computer Vision API.
Using these two as the descriptors of the image
and the question, we prompt gpt-3.5-turbo to
get the application domains and knowledge type.

2https://huggingface.co/nlpconnect/vit-gpt2-image-
captioning

The prompt used for this task is given in Table 7 in
Appendix A.

After this, we post-process the tags by remov-
ing entries that do not belong to any of the entries
in Table 1. If all tags are removed for a task in-
stance, we add "Other" by default. Finally, we
manually go through each of the labels and ensure
that they are correctly tagged and replace any erro-
neous tag. The final set contains questions, images,
candidate answers, task type, application domains,
and knowledge type of all 5725 candidates.

From the instance tags, we remove the tags for
which number of instances are less than 300 from
our analyses. Please note, we do not remove the
task instances entirely, as they may contain other
tags included in the study, but just not consider
those tags in reporting our results in Section 4 due
to less number of instances. This gives a final
set of 5 task types, 14 application domains, and 9
knowledge types, which are shown in Figure 3. We
also report statistis of VQA360 in Table 2.

Statistic (per instance) Mean Std. Max

Caption Length 46.56 8.84 96
Object Tags 13.01 7.83 59
Application Domains 1.7 0.68 7
Knowledge Type 2.19 0.83 9

Table 2: Average, std. and maximum of length of cap-
tion and count of object tags in generated image descrip-
tors, and number of application domains and knowledge
types per instance. This clarifies that significant number
of task instances have multiple application domains and
knowledge type tags.

VQA360 allows extended analysis of diverse
VQA tasks and allows looking into performance
of VLMs from entirely new perspectives. Further,
the creation methodology can also be extended for
enriching other datasets and creating benchmarks
for evaluating VLMs in different settings.

We use VQA360 for rest of the analysis, and also
release it publicly (linked in footnote of Page 1), for
the research community to utilize in future research.
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Figure 2: An example with steps taken to generate the instance tags for application domains and knowledge type
(task type is mapped directly from the dataset the image is taken).

Figure 3: Number of task instances per application domain (left) and knowledge type (right) after generating the
instance tags using GPT-3.5-Turbo. All categories are represented by approx 400 instances, which is sufficient for
a representative analysis. Categories with < 300 instances are filtered out, and a task instance can be tagged to
multiple categories of a single aspect.

Although it contains instances of existing bench-
marks, it is a one-stop benchmark for an extended
evaluation with labels for task types, application
domains, and knowledge types. We also provide
object tags and captions.

3 GoEval: A VQA Evaluation Metric

Evaluating QA using lexical matching has signifi-
cant limitations, particularly when correct answers
don’t match with set of gold answers (Kamalloo
et al., 2023). A recent work (Kamalloo et al., 2023)
evaluated traditional VQA metrics against GPT-
based evaluation for open-domain QA, and found
it to be more aligned with human judgments.

Another alternative is to evaluate using NLG
metrics such as ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), and then use
a threshold to determine correct/wrong. However,
they also suffer from similar limitations, as evalu-
ated from previous work (Liu et al., 2023b). A prob-
able solution is to use BERTScore (Zhang et al.,
2019), which compares texts in embedding space,
focusing more on semantic similarity.

These metrics may be promising, but they are
not equipped to handle multimodal settings. To

fill this gap, we propose GoEval - a multimodal
metric based on GPT-4o, which can be used to
evaluate VQA. Similar to existing works (Kamal-
loo et al., 2023; Liu et al., 2023b), we create a
prompt, and ask GPT-4o if the generated answer is
correct. However, to incorporate the vision modal-
ity in making judgments, we also use the image.
We use zero-shot evaluation with prompting, using
both GPT-4o and GPT-4o-mini, to compare and
contrast performance v/s cost trade-offs.

Formally, we pick a prompt function P from the
first row of Table 8 of the Appendix A, and generate
a prompt p = P(q, r, c) based on question q, the
reference answer set r and the candidate response
c. Using this prompt and the image, we prompt
GPT-4o (OpenAI et al., 2024; OpenAI, 2024) to
ask if it is correct. We also compare our prompt
against two other ways – without using the image,
and without reference answers. This is to under-
stand which technique shows highest correlation
with human judgments. We don’t compare with tra-
ditional methods, as it is already done in the above
discussed works (Kamalloo et al., 2023; Liu et al.,
2023b), and our method without using the image is
similar to what is used in (Kamalloo et al., 2023).
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3.1 Validating GoEval

To validate GoEval, we first generate outputs on our
experimental dataset using Gemini-1.5-Pro (Team
et al., 2024), a state-of-the-art VLM. Then, we
manually evaluate all the answers on the validation
set, marking 0 for incorrect answer and 1 for correct
answer. These are the results of human evaluation.

We compare BERTScore precision, recall, F1-
score, and six variants of GoEval using GPT-4o and
GPT-4o mini (OpenAI et al., 2024), with and with-
out reference answers, and with and without using
images with human evaluations in terms of accu-
racy and Kendall Tau. The exact prompts that we
use are outlined in Table 8 of Appendix A. When
we don’t use the image, we also alter the template
text by a little to not ask model to refer the image.
The results are detailed in Table 3.

Method Acc (%) τ

BERTScore-p 1.30 36.21
BERTScore-r 1.30 12.68

BERTScore-f1 1.30 28.50

GoEval (-R, -I) 49.91 16.17
GoEval-mini (-R, -I) 52.70 10.84

GoEval (-R) 71.43 35.94
GoEval-mini (-R) 64.01 24.37

GoEval 78.48 52.43
GoEval-mini 80.33 56.71

Table 3: Comparison of different evaluation methods:
Accuracy (Acc.) and correlation (τ for Kendall’s Tau) of
evaluation metrics with human judgement. -R indicates
absence of reference answers, -I indicates absence of
image from the request. GoEval with all components
(reference answers, image) performs the best.

From the results, we can see that GoEval with
reference answer and image provides the best align-
ment with human judgment. Without using the
image (-R, -I), the performance proves to be very
weak, depicting that existing metrics that do not
utilize the image will perform poorly on VQA. We
believe this is because image context is crucial for
VQA, and in the absence of it, the model isn’t
able to reason well whether the provided answer is
correct or not. Moreover, the differences between
models are largely influenced by the amount of in-
formation. For example, performance of GoEval
and GoEval-mini with image but without reference
only has a difference of ∆τ = 11, but as soon as
the reference answers are added, τ increases by 20
units. This is because the reference answers serve
as an extra guidance in addition of the image to

determine the correctness of the candidate answer,
making the model perform better.

In summary, GoEval shows high accuracy and
Kendall’s Tau correlation with human evaluation,
and GoEval-mini marginally outperforms GoEval.
This complements VQA360 to provide an end-to-
end cohesive framework for VLM evaluation in
entirely multimodal settings.

4 Comparative Evaluation of VLMs

We evaluate state-of-the-art (SOTA) VLMs in prac-
tical settings using our framework using GoEval-
mini, since it demonstrated maximum correlation
with human judgments, and is more cost-efficient.

For VLMs, we use InternVL-2 1B and 8B (Chen
et al., 2023, 2024), PaliGemma-3B (Beyer* et al.,
2024), Qwen-2-VL 2B and 7B (Bai et al., 2023;
team, 2024), LlaVa-1.6-Mistral-7B (Liu et al.,
2024), CogVLM2-Llama-3-19B (Wang et al.,
2023; Hong et al., 2024), Gemini-1.5 Flash and
Pro (Team et al., 2024), and GPT-4o-Mini (Ope-
nAI et al., 2024). The rationale behind choosing
these models is to have sufficient diversity to al-
low users to choose the appropriate VLM based on
other constraints.

All models except Gemini-1.5 and GPT-4o are
open sourced, which gives freedom to customize
the models as desired, and host it in-house. It takes
away the privacy and regulatory risk of sending
data to a third-party, and reduces operational and
opportunity cost factor, as these APIs are costly
with rate limits. In-house hosting allows a rela-
tively fixed cost. We have taken smaller models
in the 1B-3B range which can be used in resource-
constrained environments and on-device AI.

For all open-source models, we use the Hugging-
Face implementation with the image and question
in a prompt recommended by the model card, since
we want to evaluate all scenarios uniformly. We
use Gemini APIs3 OpenAI API4 for Gemini and
GPT-4o-mini. The results are discussed in the fol-
lowing subsections. More details of the artifacts
used are given in Table 5 of the Appendix A.1.

4.1 Correlation Between VLM Outputs

Our first hypothesis was that all VLMs do not per-
form similarly with all task instances. They have
their own strengths and weaknesses. To establish
that, we evaluated the correlation between the out-

3https://ai.google.dev/gemini-api/docs
4https://platform.openai.com/docs/overview
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puts of different models for all tasks and document
the results in Figure 4.

Figure 4: Correlation of GoEval-mini values between
performance of different VLMs for all task instances.
The low correlation values for outputs between all mod-
els indicate different VLMs perform differently with
task instances.

From the figure, most of the correlations are
low. This shows that the performance difference
between VLMs is not just in terms of a global statis-
tic, but also differs for individual task instances.
Thus, some VLMs that might be great in a subset
of tasks may be poor in another subset.

The highest correlation is observed between
Gemini-1.5 Flash and Pro, followed by Qwen-2-
VL 2B and 7B, and InternVL-2-1B and 8B. Since
they are from the same family, they might have sim-
ilar training data, training strategy, and architecture.
Some open-source VLMs also exhibit higher corre-
lations (light blue) with Gemini and GPT, though
these correlations remain relatively low.

Since task types, application domains, and
knowledge types are key factors in which tasks
can be differentiated in practical settings, we move
to analyzing the performance on those factors.

4.2 Evaluation on Task Types
We evaluated VLMs on four different task
types: chart understanding using ChartQA
dataset (Masry et al., 2022), Document Un-
derstanding using DocVQA dataset (Mathew
et al., 2021), knowledge-based VQA using
A-OKVQA (Schwenk et al., 2022) and OK-
VQA (Marino et al., 2019), and general VQA using
VQAv2 (Goyal et al., 2017a). The performance of
VLMs across these is summarized in Table 4.

From the table, the closed models, which are
believed to be SOTA, outperform the smaller, open-
sourced models. This is expected considering that
those models are larger. Within them, we iden-
tify that Gemini-1.5-Pro performs significantly bet-
ter than GPT-4o-mini when extracting information
from an image is key, like interpreting documents
and charts. On the other hand, where knowledge
and comprehension are critical, GPT-4o-mini out-
performs Gemini-1.5-Pro. If processing cost is a
factor, Gemini-1.5-Flash can be chosen with ap-
proximately 7-10% performance loss.

Among open-source models, InternVL-2 shows
promising results with both 1B and 8B models
given their size, and can be chosen if open-source
models are needed. CogVLM-2-Llama-3-19B
also competes closely with Gemini-1.5-Flash in
Chart and Document understanding tasks. Llava-
1.6-Mistral-7B performs acceptable in knowledge-
based VQA and VQA, but the performance de-
grades drastically in the other two categories,
where visual comprehension is critical, exposing
its limitations in that area. Qwen-2-VL variants
and PaliGemma-3B surprisingly prove to be weak
in all tasks.

4.3 Evaluation on Application Domains

We evaluated the VLMs in all application domains
that had more than 300 task instances, and the re-
sults are shown in Figure 5.

Figure 5: Mean GoEval-mini scores for different ap-
plication domains for all VLMs. Gemini-1.5-Pro and
GPT-4o-mini are the best performing closed models,
with CogVLM-2-LlaMa-3-19B and InternVL-2-8B per-
forming the best amongst open models.
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Task Type Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o-
Mini

Chart U. 46.81 12.31 12.84 22.88 14.06 65.68 67.34 62.17 67.66 60.36
Document U. 45.68 15.81 12.49 30.07 20.00 65.76 68.17 64.36 70.53 54.68
KBQA 45.41 19.83 19.22 58.65 26.94 71.43 62.77 70.66 77.31 84.04
VQA 55.81 26.29 23.58 57.64 29.52 68.65 57.18 69.11 73.25 77.74

Table 4: Mean GoEval-mini scores for different task types for all VLMs. Bold numbers indicate best results.
Gemini-1.5-Pro performs better in chart and document understanding, while GPT-4o-mini performs better in the
other two (U. = Understanding, KBQA = Knowledge-based VQA).

If the VLMs were similar in all application
domains, their result would be perfectly circular.
However, we see that most of the VLM perfor-
mance graphs have aberrations in multiple cate-
gories, highlighting variance in strengths. In most
cases, the weakness of one of the few VLMs is com-
pensated for by the strength of others. So, choosing
a VLM wisely according to the application need
can help mitigate weaknesses.

Among the closed models, GPT-4o-mini proves
to be the best in four categories - Nature, Nu-
trition and Food, Social Media and Sports, and
Gemini-1.5-Pro proves to be the best in all other
categories. GPT-4o-mini doesn’t even remain sec-
ond best in some categories like Mathematics, Eco-
nomics, Law, and is outperformed by many open-
sourced models here. Gemini-1.5-Flash remains
strong with a performance deficit compared to Pro,
but in Social Media tasks, it almost matches Pro.
Therefore, while the appropriate model should be
selected based on requirements, the Gemini-1.5-
Pro generally looks to be the best overall choice.

In the open-source model category, InternVL-
2-8B and CogVLM-2-Llama-3-19B are the best
possible choices. CogVLM-2-Llama-3-19B gen-
erally performs well in more academic topics like
Mathematics, Computer Science, law, Government
and Politics, but suffers a lot of performance degra-
dation in more social topics like Nature, Nutrition
and Food, Social Media, Sports. InternVL-2-8B
also shows similar traits, but the difference is rela-
tively less. For academic topics, these models even
outperform some of the closed models. Llava-1.6-
Mistral-7B is one model that shows exactly oppo-
site trait than this, being limited in academic top-
ics as compared to social topics. Qwen-2 variants
and PaliGemma show weak results in all domains,
like in task types. InternVL-2-1B remains the best
choice if a small model is required, with decent

results using 1B parameters.

4.4 Evaluation on Knowledge Types

Similar to application domains, we evaluate all
VLMs on all knowledge types where number of
task instances is greater than 300. We demonstrate
the results using a similar radar chart in Figure 6.

Figure 6: Mean GoEval-mini scores for different knowl-
edge types for all VLMs. Gemini-1.5-Pro and GPT-4o-
mini perform the best in most knowledge types, while
InternVL-2 models also demonstrate competitive per-
formance based on their size.

In the closed models category, the SOTA per-
formance is again shared by Gemini-1.5-Pro and
GPT-4o-mini. But unlike in application domains,
GPT-4o-mini competes more strongly with Gemini-
1.5-Pro on several knowledge types. Visual, So-
cial and Commonsense knowledge is where the
advantage of GPT-4o-mini over Gemini-1.5-Pro
is maximum, again depicting its strength in social
knowledge types. It is still considerably weak in
temporal, scientific, and mathematical knowledge,
falling behind even some of the small open-source
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models. Gemini-1.5-Pro will still be the best over-
all choice, but different models can be selected
based on the results obtained for specific knowl-
edge types. Gemini-1.5-Flash again follows similar
trend, with slight performance difference from Pro.

Comparing open-source models, InternVL-2-8B
and CogVLM-2-Llama-3-8B are the best choices
here as well, but here we can see that InternVL-2-
8B outperforms the latter in all knowledge types.
InternVL-2-1B continues to be the best overall
choice if small models are required, and the Qwen-
2 variants and PaliGemma continue to be the least
effective. Therefore, InternVL-2-8B is the best
overall choice for open source models.

4.5 Overall Analysis and Recommendations
In subsections 4.2, 4.3 and 4.4, we evaluated all
vision-language models under three different as-
pects of task types, application domains and knowl-
edge types. We also discussed their strengths and
weaknesses in those categories and recommended
different VLMs to use under different requirements.
In this section, we will take a higher level look at
everything together.

We identified that Gemini-1.5-Pro and GPT-4o-
mini are different. In general, GPT-4o-mini is
weaker in analytical tasks, like tasks of Mathemat-
ics or Economics domain, or scientific or mathe-
matical knowledge types. It not only falls behind
Gemini-1.5-Pro in these tasks, but also behind open
models like InternVL-2-8B or CogVLM-2-Llama-
3-19B. However, it is strong is social and topical
tasks like Nature, Sports, Nutrition and Food do-
mains. Gemini-1.5-Pro proves strong more gener-
ally, but is expensive. It is either the best, or comes
close second or third best. Therefore, if cost is a
significant factor, Gemini-1.5-Flash can be consid-
ered as a decent alternative at a performance deficit
of around 7-10%.

InternVL-2-8B and CogVLM-2-Llama-3-19B
are strong open-source models. Due to size dif-
ferences, resource availability also contributes to
deciding which model to use. CogVLM-2-Llama-
3-19B is better at more academic tasks, that be-
long to domains like History, Law, Computer Sci-
ence, etc., or knowledge types like Temporal, Sci-
entific or Mathematical Knowledge. InternVL-2-
8B is a more general capable model that demon-
strates more suitability in broader application re-
quirements. In some cases, it outperforms GPT-4o-
mini as well. Possessing superior performance in
addition to other advantages of open-sourced model

makes it a strong choice. It can also be aligned for
downstream tasks to improve performance.

Among small models suited for on-device
AI, resource-efficient environments, InternVL-
2-1B proves is strongest overall, significantly
outperforming models like Qwen2-VL-2B and
PaliGemma-3B in all categories.

The Qwen-2-VL variants and PaliGemma-3B
did not prove fit for use in our experimental set-
tings, being very weak on all categories. LlaVa-
1.6-Mistral-7B also performs average, similar to
InternVL-2-1B, but is weak in all aspects compared
to InternVL-2-8B, a similar-sized model.

Since Gemini-1.5-Pro was the most successful
model, we demonstrate some of the qualitative
examples using that model in Table 9 in the Ap-
pendix A. Finally, Tables 10 and 11 of the Ap-
pendix A contain quantitative results on all appli-
cation domains and knowledge types, respectively,
including the categories that were excluded from
the study of the main paper.

5 Conclusion

In this paper, we propose a comprehensive frame-
work for evaluating Vision-Language Models
(VLMs) across diverse visual question-answering
(VQA) tasks, addressing specific application re-
quirements. Our framework introduces a novel
evaluation paradigm that classifies VQA tasks
along three dimensions: task types, application
domains, and knowledge types. To support this, we
release VQA360, a dataset annotated across 4 task
types, 22 application domains, and 15 knowledge
types, derived from established VQA benchmarks.
We also present GoEval, a new evaluation metric
to complement it, leveraging GPT-4o to integrate
visual and textual information, achieving a 56.71%
correlation with human judgments and outperform-
ing traditional metrics.

Through experiments with 10 state-of-the-art
VLMs, we observe significant performance varia-
tion across categories, with no single model prov-
ing universally optimal. Proprietary models like
Gemini-1.5-Pro and GPT-4o-mini achieve the high-
est overall performance, while open-source mod-
els such as InternVL-2-8B and CogVLM-2-Llama-
3-19B excel in specific scenarios. Our findings
provide actionable insights for task-specific VLM
selection, and establishes a evaluation framework
that can be extended to other vision-language tasks,
fostering progress in multimodal research.

83



References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Lucas Beyer*, Andreas Steiner*, André Susano Pinto*,
Alexander Kolesnikov*, Xiao Wang*, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael
Tschannen, Emanuele Bugliarello, Thomas Un-
terthiner, Daniel Keysers, Skanda Koppula, Fangyu
Liu, Adam Grycner, Alexey Gritsenko, Neil Houlsby,
Manoj Kumar, Keran Rong, Julian Eisenschlos,
Rishabh Kabra, Matthias Bauer, Matko Bošn-
jak, Xi Chen, Matthias Minderer, Paul Voigtlaen-
der, Ioana Bica, Ivana Balazevic, Joan Puigcerver,
Pinelopi Papalampidi, Olivier Henaff, Xi Xiong,
Radu Soricut, Jeremiah Harmsen, and Xiaohua Zhai*.
2024. PaliGemma: A versatile 3B VLM for transfer.
arXiv preprint arXiv:2407.07726.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and
Radu Soricut. 2021. Conceptual 12m: Pushing web-
scale image-text pre-training to recognize long-tail
visual concepts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3558–3568.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. 2015. Microsoft coco cap-
tions: Data collection and evaluation server. Preprint,
arXiv:1504.00325.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi

Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su,
Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo,
Tong Lu, Yu Qiao, and Jifeng Dai. 2023. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. Preprint,
arXiv:2307.08691.

Xingyu Fu, Sheng Zhang, Gukyeong Kwon, Pramu-
ditha Perera, Henghui Zhu, Yuhao Zhang, Alexan-
der Hanbo Li, William Yang Wang, Zhiguo Wang,
Vittorio Castelli, Patrick Ng, Dan Roth, and Bing
Xiang. 2023. Generate then select: Open-ended vi-
sual question answering guided by world knowledge.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 2333–2346, Toronto,
Canada. Association for Computational Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017a. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017b. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu,
Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang,
Junhui Ji, Zhao Xue, et al. 2024. Cogvlm2: Visual
language models for image and video understanding.
Preprint, arXiv:2408.16500.

Kushal Kafle and Christopher Kanan. 2017. An analysis
of visual question answering algorithms. Preprint,
arXiv:1703.09684.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591–5606, Toronto, Canada.
Association for Computational Linguistics.

Shengzhi Li and Nima Tajbakhsh. 2023. Sci-
graphqa: A large-scale synthetic multi-turn question-
answering dataset for scientific graphs. Preprint,
arXiv:2308.03349.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

84



Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mo-
hammad Shoeybi, and Song Han. 2024. Vila: On
pre-training for visual language models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 26689–
26699.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024. Improved baselines with visual instruc-
tion tuning. Preprint, arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Conference on Computer Vision and Pattern
Recognition (CVPR).

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. ChartQA: A benchmark
for question answering about charts with visual and
logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263–
2279, Dublin, Ireland. Association for Computational
Linguistics.

Manoj Mathew, Shijian Lu, Antonio Torralba, and Di-
mosthenis Karatzas. 2021. Document visual ques-
tion answering (docvqa). In Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 2200–2209.

OpenAI. 2023. Gpt-3.5 turbo. OpenAI API. Avail-
able from OpenAI: https://platform.openai.
com/docs/models/gpt-3.5-turbo.

OpenAI. 2024. Gpt-4o: Large language model. Ac-
cessed: 2024-09-06.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,

Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,

85



Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answering
using world knowledge. Preprint, arXiv:2206.01718.

Neelabh Sinha, Vinija Jain, and Aman Chadha. 2024.
Are small language models ready to compete with
large language models for practical applications?
Preprint, arXiv:2406.11402.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh
Mariooryad, Yifan Ding, Xinyang Geng, Fred Al-
cober, Roy Frostig, Mark Omernick, Lexi Walker,
Cosmin Paduraru, Christina Sorokin, Andrea Tac-
chetti, Colin Gaffney, Samira Daruki, Olcan Ser-
cinoglu, Zach Gleicher, Juliette Love, Paul Voigt-
laender, Rohan Jain, Gabriela Surita, Kareem Mo-
hamed, Rory Blevins, Junwhan Ahn, Tao Zhu, Korn-
raphop Kawintiranon, Orhan Firat, Yiming Gu, Yu-
jing Zhang, Matthew Rahtz, Manaal Faruqui, Natalie
Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui
Zhu, Nobuyuki Morioka, Kevin Hui, Krishna Hari-
dasan, Victor Campos, Mahdis Mahdieh, Mandy Guo,
Samer Hassan, Kevin Kilgour, Arpi Vezer, Heng-
Tze Cheng, Raoul de Liedekerke, Siddharth Goyal,
Paul Barham, DJ Strouse, Seb Noury, Jonas Adler,
Mukund Sundararajan, Sharad Vikram, Dmitry Lep-
ikhin, Michela Paganini, Xavier Garcia, Fan Yang,
Dasha Valter, Maja Trebacz, Kiran Vodrahalli, Chu-
layuth Asawaroengchai, Roman Ring, Norbert Kalb,
Livio Baldini Soares, Siddhartha Brahma, David
Steiner, Tianhe Yu, Fabian Mentzer, Antoine He,
Lucas Gonzalez, Bibo Xu, Raphael Lopez Kauf-
man, Laurent El Shafey, Junhyuk Oh, Tom Hennigan,
George van den Driessche, Seth Odoom, Mario Lucic,
Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan,
Santiago Ontanon, Luheng He, Denis Teplyashin,
Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis
Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh,
Aakanksha Chowdhery, Yang Xu, Mehran Kazemi,
Ehsan Amid, Anastasia Petrushkina, Kevin Swersky,
Ali Khodaei, Gowoon Chen, Chris Larkin, Mario
Pinto, Geng Yan, Adria Puigdomenech Badia, Piyush
Patil, Steven Hansen, Dave Orr, Sebastien M. R.
Arnold, Jordan Grimstad, Andrew Dai, Sholto Dou-
glas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena Gri-
bovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel,
Paul Komarek, Sophia Austin, Sebastian Borgeaud,
Linda Friso, Abhimanyu Goyal, Ben Caine, Kris
Cao, Da-Woon Chung, Matthew Lamm, Gabe Barth-
Maron, Thais Kagohara, Kate Olszewska, Mia Chen,
Kaushik Shivakumar, Rishabh Agarwal, Harshal
Godhia, Ravi Rajwar, Javier Snaider, Xerxes Doti-
walla, Yuan Liu, Aditya Barua, Victor Ungureanu,

Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth,
James Qin, Ivo Danihelka, Tulsee Doshi, Martin
Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Ar-
jun Kar, Madhu Gurumurthy, Cheng Li, Ruoxin
Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz,
Nathan Lintz, Harsh Mehta, Heidi Howard, Mal-
colm Reynolds, Lora Aroyo, Quan Wang, Lorenzo
Blanco, Albin Cassirer, Jordan Griffith, Dipanjan
Das, Stephan Lee, Jakub Sygnowski, Zach Fisher,
James Besley, Richard Powell, Zafarali Ahmed, Do-
minik Paulus, David Reitter, Zalan Borsos, Rishabh
Joshi, Aedan Pope, Steven Hand, Vittorio Selo, Vi-
han Jain, Nikhil Sethi, Megha Goel, Takaki Makino,
Rhys May, Zhen Yang, Johan Schalkwyk, Christina
Butterfield, Anja Hauth, Alex Goldin, Will Hawkins,
Evan Senter, Sergey Brin, Oliver Woodman, Mar-
vin Ritter, Eric Noland, Minh Giang, Vijay Bolina,
Lisa Lee, Tim Blyth, Ian Mackinnon, Machel Reid,
Obaid Sarvana, David Silver, Alexander Chen, Lily
Wang, Loren Maggiore, Oscar Chang, Nithya At-
taluri, Gregory Thornton, Chung-Cheng Chiu, Os-
kar Bunyan, Nir Levine, Timothy Chung, Evgenii
Eltyshev, Xiance Si, Timothy Lillicrap, Demetra
Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu,
Ross McIlroy, Kartikeya Badola, Paramjit Sandhu,
Erica Moreira, Wojciech Stokowiec, Ross Hems-
ley, Dong Li, Alex Tudor, Pranav Shyam, Elahe
Rahimtoroghi, Salem Haykal, Pablo Sprechmann,
Xiang Zhou, Diana Mincu, Yujia Li, Ravi Addanki,
Kalpesh Krishna, Xiao Wu, Alexandre Frechette,
Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang,
Thi Avrahami, Ye Zhang, Emanuel Taropa, Hanzhao
Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano,
HyunJeong Choe, Alex Tomala, Chalence Safranek-
Shrader, Nora Kassner, Mantas Pajarskas, Matt
Harvey, Sean Sechrist, Meire Fortunato, Christina
Lyu, Gamaleldin Elsayed, Chenkai Kuang, James
Lottes, Eric Chu, Chao Jia, Chih-Wei Chen, Pe-
ter Humphreys, Kate Baumli, Connie Tao, Rajku-
mar Samuel, Cicero Nogueira dos Santos, Anders
Andreassen, Nemanja Rakićević, Dominik Grewe,
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ham Mansour, Tomasz Kępa, François-Xavier Aubet,
Anton Algymr, Dan Banica, Agoston Weisz, An-
dras Orban, Alexandre Senges, Ewa Andrejczuk,
Mark Geller, Niccolo Dal Santo, Valentin Anklin,
Majd Al Merey, Martin Baeuml, Trevor Strohman,
Junwen Bai, Slav Petrov, Yonghui Wu, Demis Has-
sabis, Koray Kavukcuoglu, Jeffrey Dean, and Oriol
Vinyals. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
Preprint, arXiv:2403.05530.

Qwen team. 2024. Qwen2-vl.

Bart Thomee, David A. Shamma, Gerald Friedland,
Benjamin Elizalde, Karl Ni, Douglas Poland, Damian
Borth, and Li-Jia Li. 2016. Yfcc100m: the new
data in multimedia research. Communications of the
ACM, 59(2):64–73.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,

88



Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi
Li, Yuxiao Dong, Ming Ding, and Jie Tang. 2023.
Cogvlm: Visual expert for pretrained language mod-
els. Preprint, arXiv:2311.03079.

Zihao Wei, Zixuan Pan, and Andrew Owens. 2024. Effi-
cient vision-language pre-training by cluster masking.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
26815–26825.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-
Fei. 2016. Visual7w: Grounded question answering
in images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

A Appendix

In this appendix, we provide additional details and
results related to our work. The implementation
details can be found in Section A.1. Table 7 pro-
vides prompts designed to classify tasks by domain
(e.g., "Anthropology," "Computer Science") and
by the type of knowledge required (e.g., "Com-
monsense Knowledge," "Visual Knowledge"). Ta-
ble 8 presents the prompts used in GoEval to verify
whether a candidate answer is correct, with or with-
out reference answers, both for visual and text-only
evaluation. Additionally, Table 9 details some qual-
itative examples using the best overall model that
we found - Gemini-1.5-Pro. Finally, Tables 10
and 11 contain quantitative results on all applica-
tion domains and knowledge types, respectively,
including the categories that were excluded from
the study of the main paper.

A.1 Implementation Details

In this subsection, we will discuss more details
around implementation. Table 5 contains all the
model cards, which contain exact details of how we
implemented all the VLMs, and the recommended
prompt templates that we used in our evaluation.

For all the models, we prepend the question with
a static text saying ‘Only answer the below ques-
tion. Do not provide any additional information. In
addition, we resize all images to 448× 448 before
sending them through the model. This is the input
to every model. For decoding the output, we use
Greedy sampling, since fluency is not a key factor
in VQA as long as the answers are correct. We use
max_new_tokens = 2048 for all models.

Artifact Link

VQAv2 Dataset
Card

OK-VQA Dataset
Card

A-OKVQA Dataset
Card

ChartQA Dataset
Card

DocumentVQA Dataset
Card

InternVL-2-1B Model Card
Qwen-2-VL-2B Model Card
PaliGemma-3B Model Card
Qwen-2-VL-7B Model Card
LLaVA-v1.6-Mistral-7B Model Card
InternVL-2-8B Model Card
CogVLM-2-Llama-3-19B Model Card
Gemini-1.5-Flash Model Card
Gemini-1.5-Pro Model Card
GPT-4o-Mini Model Card

BERTScore Doc (used
using
Roberta
Large)

Table 5: Details of artifacts used with artifact links.
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The implementation of executing all models and
our evaluation metric can be found in the Code
provided. We also provide the implementation of
captions and object tags that can be used if this
framework is being adapted to other tasks. All the
configuration parameters and hardware used are
detailed in Table 6.

Configuration Pa-
rameter

Specification

Number of GPUs 1, 2 for CogVLM-2
GPU Model Nvidia A40
GPU Memory Ca-
pacity

48 GB

Batch Size 8
Image Resolution 448 × 448 (224 for

PaliGemma)
Maximum New To-
kens

2048

Table 6: Hardware and model configuration details used
in the experiments, highlighting specialized settings for
certain models.

We also use 4-bit quantization and Flash Atten-
tion 2 (Dao, 2023) wherever supported for memory
and execution efficiency.

A.2 Using this Work to Select VLM

The prerequisite to using this work is to lay down
the problem statement and its scope along with
other system parameters that should include, but
should not be limited to resource availability, data
availability, system constraints, resource or data
processing budget, acceptable performance bounds,
etc.

Start with finding the task type, application do-
main and reasoning type closest to your require-
ment from Table 4, 10 and 11. Next, from your
design constraints, identify some sets of VLMs ac-
ceptable for your solution. For example, if using
on-device AI, you might only be able to use ei-
ther small VLMs, or closed model accessible by
APIs, depending on your acceptable performance
bounds, and regulatory aspects of being able to
share data across, having the inference budget for
using APIs, and so on. Refer to Section 4 for a
more detailed discussion around which models will
fit which needs. Between those, check the perfor-
mance of the subset of categories and subset of
models, and choose the best model.

These models provide a comparison on a uni-
form foundation so that a comparative analysis can
be done. These models can further be customized
as desired for best outputs as per other design pa-
rameters and needs.
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Aspect Prompt to Extract Tags

Prompt to Extract
Application Do-
mains

Following are source application domains:
Anthropology, Books, Computer Science, Economics, Fiction, Formal logic,
Government and Politics, History, Justice, Knowledge Base, Law, Linguistics,
Movies, Mathematics, Nature, News, Nutrition and Food, Professions, Public
Places, Reviews, Science, Social Media, Sports.
There is an image which can be described as: {caption}.
The image has the following objects: {object_tags}.
A user is asking the following question on the image: {question},
What type of application domain does this task belong to? Choose one or many
alternatives from the above options.
Return output as list of strings as JSON Object. Example: {{’applica-
tion_domain’: [’domain_a’, ’domain_b’]}}

Prompt to Extract
Knowledge Type

Following are the names and explanation of types of knowledge:
Commonsense Knowledge: Knowledge about the world that humans learn from
their everyday experiences (e.g., many donuts being made in a cart implies they
are for sale rather than for personal consumption).
Visual Knowledge: Knowledge of concepts represented visually (e.g., muted
color palettes are associated with the 1950s).
Cultural Knowledge: Understanding cultural references, norms, and practices
(e.g., knowing that a red envelope is associated with good luck in Chinese
culture).
Temporal Knowledge: Awareness of historical events, timelines, and changes
over time (e.g., recognizing a specific style of clothing as being from the 1980s).
Geographical Knowledge: Information about locations, landmarks, and regional
characteristics (e.g., identifying a famous monument like the Eiffel Tower in
Paris).
Social Knowledge: Understanding social interactions, relationships, and behav-
iors (e.g., recognizing that a handshake is a form of greeting).
Scientific Knowledge: Knowledge from various scientific domains like physics,
biology, chemistry, astronomy, etc. (e.g., understanding that certain plants are
poisonous).
Technical Knowledge: Familiarity with technology, machinery, and tools (e.g.,
identifying parts of a computer or types of construction equipment).
Mathematical Knowledge: Basic mathematical concepts and their applications
(e.g., understanding geometric shapes or calculating areas).
Literary Knowledge: Awareness of literature, authors, and genres (e.g., recog-
nizing characters from classic novels).
There is an image which can be described as: {caption}.
The image has the following objects: {object_tags}.
A user is asking the following question on the image: {question}.
What type of knowledge is required to answer the question? Choose one or
many alternatives from the above options.
Return output as list of strings as JSON Object. Example: {{’knowledge_type’:
[’knowledge_a’, ’knowledge_b’]}}

Table 7: Prompts used to generate domain and knowledge type tags using the question, image caption and object
tags.
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Prompt Reference Image

Question: {question}
Reference Answers: {reference}
Candidate Answer: {candidate}

Consider Reference Answers to be multiple answers provided
for the given question in context with the above image. If
there are multiple answers, they are separated by semi-colon(;).
Based on the image, is the candidate answer a correct answer for
the given question? Answer only ‘yes’ if the candidate answer
is correct or only ‘no’ if it is not.

✓ ✓

Question: {question}
Candidate Answer: {candidate}

Based on the image, is the candidate answer a correct answer for
the given question? Answer only ‘yes’ if the candidate answer
is correct or only ‘no’ if it is not.

× ✓

Question: {question}
Reference Answers: {reference}
Candidate Answer: {candidate}

Consider Reference Answers to be multiple answers provided
for the given question in context. If there are multiple answers,
they are separated by semi-colon(;). Based on the context, is
the candidate answer a correct answer for the given question?
Answer only ‘yes’ if the candidate answer is correct or only ‘no’
if it is not.

✓ ×

Question: {question}
Candidate Answer: {candidate}

Based on the context, is the candidate answer a correct answer
for the given question? Answer only ‘yes’ if the candidate
answer is correct or only ‘no’ if it is not.

× ×

Table 8: Prompts used with GoEval in different settings. (✓) represents included, (×) represents excluded.
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Image Question Labels Response Human
Evalu-
ated

Label

GoEval-
mini

The cat is doing
what?

laying down,
sleeping, laying
down, laying,

sleeping,
resting, laying,
laying, laying
down, resting

Lying
down

✓ ✓

What number
is closest to
the number of
people that are
pushing the
bus?

eight, eight,
eight, ten,

twelve, nine,
twenty, ten,

nine, 15

10 × ✓

Is there any
difference be-
tween the male
and female
values?

No No ✓ ×

What is the
name of the
company men-
tioned in logo?

golden tobacco
limited, Golden

Tobacco
Limited

The logo × ×

What is the
message writ-
ten on?

sign, sign,
metal sign, stop

sign, signs,
street sign,
sign, metal

sign, street sign

A sign ✓ ✓

Table 9: Some qualitative examples with Gemini-1.5-Pro. (✓) represents correct answer, saying that response
correctly answers the question, (×) represents incorrect answer.
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Domain Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
v1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o-
Mini

Anthropology 46.47 20.33 16.60 60.58 21.99 73.86 63.18 71.91 74.69 82.16
Books 55.56 21.37 10.68 40.60 20.94 70.51 66.23 63.79 72.22 66.95
Computer Science 48.96 12.86 16.18 37.14 18.05 65.77 63.83 63.29 69.65 65.61
Economics 49.73 9.73 8.92 17.84 10.54 66.49 66.58 60.39 67.57 54.47
Fiction 53.70 22.22 24.07 61.11 29.63 81.48 57.41 62.96 70.37 83.33
Formal logic 31.96 23.71 14.43 37.50 22.68 56.70 50.00 58.33 63.92 58.76
Government and Politics 46.11 16.71 14.57 34.30 21.86 66.96 66.96 66.45 70.28 62.72
History 45.80 19.42 18.47 42.21 23.98 65.47 63.86 64.88 70.19 68.56
Justice 41.07 23.21 10.71 46.43 32.14 66.07 62.50 64.81 73.21 71.43
Knowledge Base 47.91 18.60 13.05 38.30 20.20 68.97 63.44 64.76 71.78 69.40
Law 47.29 17.98 14.04 38.18 23.40 65.27 65.17 67.92 70.79 62.34
Linguistics 48.00 17.78 20.89 44.89 21.33 67.56 58.04 63.64 75.00 79.46
Mathematics 33.33 13.12 12.69 23.71 15.70 57.85 60.00 52.99 62.80 50.44
Movies 53.80 22.78 20.89 51.90 32.91 69.62 63.29 66.24 76.58 78.06
Nature 50.98 25.92 22.22 61.05 29.41 71.99 61.50 74.34 78.14 84.32
News 54.59 17.84 11.35 31.89 17.84 68.11 68.51 70.79 71.74 62.78
Nutrition and Food 42.83 18.99 21.55 49.81 23.26 67.44 67.05 69.22 75.73 78.56
Other 48.46 19.39 23.64 52.96 24.35 68.32 58.91 67.46 71.63 78.10
Professions 51.53 17.88 17.55 47.18 24.35 69.65 64.62 70.24 75.03 75.15
Public Places 54.48 18.34 21.72 60.34 24.83 77.59 66.55 75.00 82.35 82.41
Reviews 52.86 18.57 23.19 50.00 24.29 64.29 60.00 69.12 70.00 72.46
Science 48.75 21.42 18.79 43.63 24.31 67.28 63.94 68.78 74.34 71.56
Social Media 51.34 23.47 21.52 56.72 29.58 70.42 63.88 73.27 74.26 82.06
Sports 51.55 22.33 21.36 60.53 29.26 73.53 64.50 69.98 78.79 81.46

Table 10: Mean GoEval-mini for various application domains across multiple VLMs. The best result in each domain
is represented in BOLD. Note, this also includes the domains that were excluded from main paper’s analysis because
of having less than 300 task instances.

Knowledge Type Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
v1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o
mini

Commonsense 49.95 21.10 19.88 53.33 25.25 71.06 63.91 71.24 76.32 78.41
Cultural 48.36 18.70 15.57 49.65 23.26 70.54 66.70 70.21 75.77 75.31
Geographical 56.58 19.95 19.20 51.37 24.77 71.00 64.98 73.28 78.50 78.12
Literary 44.25 17.42 13.24 41.46 20.91 68.64 71.58 67.97 73.78 66.78
Mathematical 38.13 11.33 12.40 22.93 16.13 61.20 60.51 54.30 63.67 50.88
Other 41.82 13.64 20.00 45.45 16.36 62.73 57.27 63.30 67.59 76.85
Scientific 41.72 16.78 18.98 35.76 21.63 69.54 68.81 67.87 74.22 66.59
Social 48.12 21.49 19.23 55.04 27.87 70.09 63.57 70.63 74.24 77.20
Technical 46.15 17.74 15.31 42.13 24.29 69.17 61.32 64.19 71.87 72.10
Temporal 49.62 12.69 10.14 25.13 16.15 68.72 67.31 63.42 69.45 58.95
Visual 52.03 21.97 19.54 52.92 24.13 68.67 60.27 67.87 73.81 77.82

Table 11: Mean GoEval-mini for all knowledge types across multiple VLMs. The best result in each knowledge
type is represented in BOLD. Note, this also includes the knowledge types that were excluded from main paper’s
analysis because of having less than 300 task instances.

94



Author Index

Bai, Yuyu, 24
Bali, Shayan, 52

Chadha, Aman, 76
Chien-Hua, Chen, 57

Eetemadi, Sauleh, 10

Farsi, Farhan, 52

Hsieh, Hsin-Yi, 57
Huang, Hen-Hsen, 57

Jain, Vinija, 76

Li, JinJin, 40
Lin, Hung-Ju, 57
Lin, Shuo-Yueh, 57
Liu, Oliver, 40
Liu, Shang Wei, 57

Ma, Lan, 40
Meng, Chang Chih, 57
Mirzaei, Motahhare, 10
Momtazi, Saeedeh, 52

Pezzelle, Sandro, 24
Pirhadi, Mohammad Javad, 10

Raja, Sana Javaid, 1

Sabouri, Sadra, 52
Shariati Motlagh, Shahriar, 52
Shoaib, Aqsa, 1
Sinha, Neelabh, 76
Sun, Tao, 40

Wu, I-Chen, 57

Zafar, Adeel, 1

95


	A Dataset for Programming-based Instructional Video Classification and Question Answering
	CVT5: Using Compressed Video Encoder and UMT5 for Dense Video Captioning
	If I feel smart, I will do the right thing: Combining Complementary Multimodal Information in Visual Language Models
	LLaVA-RE: Binary Image-Text Relevancy Evaluation with Multimodal Large Language Model
	Persian in a Court: Benchmarking VLMs In Persian Multi-Modal Tasks
	TaiwanVQA: A Benchmark for Visual Question Answering for Taiwanese Daily Life
	Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types

