@inproceedings{indrehus-etal-2025-semqa,
title = "{S}em{QA}: Evaluating Evidence with Question Embeddings and Answer Entailment for Fact Verification",
author = "Indrehus, Kjetil and
Vannebo, Caroline and
Pop, Roxana",
editor = "Akhtar, Mubashara and
Aly, Rami and
Christodoulopoulos, Christos and
Cocarascu, Oana and
Guo, Zhijiang and
Mittal, Arpit and
Schlichtkrull, Michael and
Thorne, James and
Vlachos, Andreas",
booktitle = "Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.fever-1.14/",
doi = "10.18653/v1/2025.fever-1.14",
pages = "184--200",
ISBN = "978-1-959429-53-1",
abstract = "Automated fact-checking (AFC) of factual claims require efficiency and accuracy. Existing evaluation frameworks like Ev$^2$R achieve strong semantic grounding but incur substantial computational cost, while simpler metrics based on overlap or one-to-one matching often misalign with human judgments. In this paper, we introduce SemQA, a lightweight and accurate evidence-scoring metric that combines transformer-based question scoring with bidirectional NLI entailment on answers. We evaluate SemQA by conducting human evaluations, analyzing correlations with existing metrics, and examining representative examples."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="indrehus-etal-2025-semqa">
<titleInfo>
<title>SemQA: Evaluating Evidence with Question Embeddings and Answer Entailment for Fact Verification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kjetil</namePart>
<namePart type="family">Indrehus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline</namePart>
<namePart type="family">Vannebo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roxana</namePart>
<namePart type="family">Pop</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mubashara</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rami</namePart>
<namePart type="family">Aly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-53-1</identifier>
</relatedItem>
<abstract>Automated fact-checking (AFC) of factual claims require efficiency and accuracy. Existing evaluation frameworks like Ev²R achieve strong semantic grounding but incur substantial computational cost, while simpler metrics based on overlap or one-to-one matching often misalign with human judgments. In this paper, we introduce SemQA, a lightweight and accurate evidence-scoring metric that combines transformer-based question scoring with bidirectional NLI entailment on answers. We evaluate SemQA by conducting human evaluations, analyzing correlations with existing metrics, and examining representative examples.</abstract>
<identifier type="citekey">indrehus-etal-2025-semqa</identifier>
<identifier type="doi">10.18653/v1/2025.fever-1.14</identifier>
<location>
<url>https://aclanthology.org/2025.fever-1.14/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>184</start>
<end>200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemQA: Evaluating Evidence with Question Embeddings and Answer Entailment for Fact Verification
%A Indrehus, Kjetil
%A Vannebo, Caroline
%A Pop, Roxana
%Y Akhtar, Mubashara
%Y Aly, Rami
%Y Christodoulopoulos, Christos
%Y Cocarascu, Oana
%Y Guo, Zhijiang
%Y Mittal, Arpit
%Y Schlichtkrull, Michael
%Y Thorne, James
%Y Vlachos, Andreas
%S Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-53-1
%F indrehus-etal-2025-semqa
%X Automated fact-checking (AFC) of factual claims require efficiency and accuracy. Existing evaluation frameworks like Ev²R achieve strong semantic grounding but incur substantial computational cost, while simpler metrics based on overlap or one-to-one matching often misalign with human judgments. In this paper, we introduce SemQA, a lightweight and accurate evidence-scoring metric that combines transformer-based question scoring with bidirectional NLI entailment on answers. We evaluate SemQA by conducting human evaluations, analyzing correlations with existing metrics, and examining representative examples.
%R 10.18653/v1/2025.fever-1.14
%U https://aclanthology.org/2025.fever-1.14/
%U https://doi.org/10.18653/v1/2025.fever-1.14
%P 184-200
Markdown (Informal)
[SemQA: Evaluating Evidence with Question Embeddings and Answer Entailment for Fact Verification](https://aclanthology.org/2025.fever-1.14/) (Indrehus et al., FEVER 2025)
ACL