@inproceedings{rashid-hakak-2025-fathom,
title = "Fathom: A Fast and Modular {RAG} Pipeline for Fact-Checking",
author = "Rashid, Farrukh Bin and
Hakak, Saqib",
editor = "Akhtar, Mubashara and
Aly, Rami and
Christodoulopoulos, Christos and
Cocarascu, Oana and
Guo, Zhijiang and
Mittal, Arpit and
Schlichtkrull, Michael and
Thorne, James and
Vlachos, Andreas",
booktitle = "Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.fever-1.20/",
doi = "10.18653/v1/2025.fever-1.20",
pages = "258--265",
ISBN = "978-1-959429-53-1",
abstract = "We present Fathom, a Retrieval-Augmented Generation (RAG) pipeline for automated fact-checking, built entirely using lightweight open-source language models. The system begins with HyDE-style question generation to expand the context around each claim, followed by a dual-stage retrieval process using BM25 and semantic similarity to gather relevant evidence. Finally, a lightweight LLM performs veracity prediction, producing both a verdict and supporting rationale. Despite relying on smaller models, our system achieved an AVeriTeC score of 0.2043 on the test set, a 0.99{\%} absolute improvement over the baseline and 0.378 on the dev set, marking a 27.7{\%} absolute improvement."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rashid-hakak-2025-fathom">
<titleInfo>
<title>Fathom: A Fast and Modular RAG Pipeline for Fact-Checking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Farrukh</namePart>
<namePart type="given">Bin</namePart>
<namePart type="family">Rashid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saqib</namePart>
<namePart type="family">Hakak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mubashara</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rami</namePart>
<namePart type="family">Aly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-53-1</identifier>
</relatedItem>
<abstract>We present Fathom, a Retrieval-Augmented Generation (RAG) pipeline for automated fact-checking, built entirely using lightweight open-source language models. The system begins with HyDE-style question generation to expand the context around each claim, followed by a dual-stage retrieval process using BM25 and semantic similarity to gather relevant evidence. Finally, a lightweight LLM performs veracity prediction, producing both a verdict and supporting rationale. Despite relying on smaller models, our system achieved an AVeriTeC score of 0.2043 on the test set, a 0.99% absolute improvement over the baseline and 0.378 on the dev set, marking a 27.7% absolute improvement.</abstract>
<identifier type="citekey">rashid-hakak-2025-fathom</identifier>
<identifier type="doi">10.18653/v1/2025.fever-1.20</identifier>
<location>
<url>https://aclanthology.org/2025.fever-1.20/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>258</start>
<end>265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fathom: A Fast and Modular RAG Pipeline for Fact-Checking
%A Rashid, Farrukh Bin
%A Hakak, Saqib
%Y Akhtar, Mubashara
%Y Aly, Rami
%Y Christodoulopoulos, Christos
%Y Cocarascu, Oana
%Y Guo, Zhijiang
%Y Mittal, Arpit
%Y Schlichtkrull, Michael
%Y Thorne, James
%Y Vlachos, Andreas
%S Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-53-1
%F rashid-hakak-2025-fathom
%X We present Fathom, a Retrieval-Augmented Generation (RAG) pipeline for automated fact-checking, built entirely using lightweight open-source language models. The system begins with HyDE-style question generation to expand the context around each claim, followed by a dual-stage retrieval process using BM25 and semantic similarity to gather relevant evidence. Finally, a lightweight LLM performs veracity prediction, producing both a verdict and supporting rationale. Despite relying on smaller models, our system achieved an AVeriTeC score of 0.2043 on the test set, a 0.99% absolute improvement over the baseline and 0.378 on the dev set, marking a 27.7% absolute improvement.
%R 10.18653/v1/2025.fever-1.20
%U https://aclanthology.org/2025.fever-1.20/
%U https://doi.org/10.18653/v1/2025.fever-1.20
%P 258-265
Markdown (Informal)
[Fathom: A Fast and Modular RAG Pipeline for Fact-Checking](https://aclanthology.org/2025.fever-1.20/) (Rashid & Hakak, FEVER 2025)
ACL