@inproceedings{seo-utsuro-2025-rag,
title = "{RAG} based Question Answering of {K}orean Laws and Precedents",
author = "Seo, Kiho and
Utsuro, Takehito",
editor = "Akhtar, Mubashara and
Aly, Rami and
Christodoulopoulos, Christos and
Cocarascu, Oana and
Guo, Zhijiang and
Mittal, Arpit and
Schlichtkrull, Michael and
Thorne, James and
Vlachos, Andreas",
booktitle = "Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.fever-1.7/",
doi = "10.18653/v1/2025.fever-1.7",
pages = "91--100",
ISBN = "978-1-959429-53-1",
abstract = "We propose a method of improving the performance of question answering based on the interpretation of criminal law regulations in the Korean language by using large language models. In this study, we develop a system that accumulates legislative texts and case precedents related to criminal procedures published on the Internet.The system searches for relevant legal provisions and precedents related to the queryunder the RAG (Retrieval-Augmented Generation) framework.It generates accurate responses to questions by conducting reasoning through large language modelsbased on these relevant laws and precedents. As an application example of this system, it can be utilized to support decision makingin investigations and legal interpretation scenarios within the field of Korean criminal law."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seo-utsuro-2025-rag">
<titleInfo>
<title>RAG based Question Answering of Korean Laws and Precedents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kiho</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takehito</namePart>
<namePart type="family">Utsuro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mubashara</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rami</namePart>
<namePart type="family">Aly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-1-959429-53-1</identifier>
</relatedItem>
<abstract>We propose a method of improving the performance of question answering based on the interpretation of criminal law regulations in the Korean language by using large language models. In this study, we develop a system that accumulates legislative texts and case precedents related to criminal procedures published on the Internet.The system searches for relevant legal provisions and precedents related to the queryunder the RAG (Retrieval-Augmented Generation) framework.It generates accurate responses to questions by conducting reasoning through large language modelsbased on these relevant laws and precedents. As an application example of this system, it can be utilized to support decision makingin investigations and legal interpretation scenarios within the field of Korean criminal law.</abstract>
<identifier type="citekey">seo-utsuro-2025-rag</identifier>
<identifier type="doi">10.18653/v1/2025.fever-1.7</identifier>
<location>
<url>https://aclanthology.org/2025.fever-1.7/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>91</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RAG based Question Answering of Korean Laws and Precedents
%A Seo, Kiho
%A Utsuro, Takehito
%Y Akhtar, Mubashara
%Y Aly, Rami
%Y Christodoulopoulos, Christos
%Y Cocarascu, Oana
%Y Guo, Zhijiang
%Y Mittal, Arpit
%Y Schlichtkrull, Michael
%Y Thorne, James
%Y Vlachos, Andreas
%S Proceedings of the Eighth Fact Extraction and VERification Workshop (FEVER)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 978-1-959429-53-1
%F seo-utsuro-2025-rag
%X We propose a method of improving the performance of question answering based on the interpretation of criminal law regulations in the Korean language by using large language models. In this study, we develop a system that accumulates legislative texts and case precedents related to criminal procedures published on the Internet.The system searches for relevant legal provisions and precedents related to the queryunder the RAG (Retrieval-Augmented Generation) framework.It generates accurate responses to questions by conducting reasoning through large language modelsbased on these relevant laws and precedents. As an application example of this system, it can be utilized to support decision makingin investigations and legal interpretation scenarios within the field of Korean criminal law.
%R 10.18653/v1/2025.fever-1.7
%U https://aclanthology.org/2025.fever-1.7/
%U https://doi.org/10.18653/v1/2025.fever-1.7
%P 91-100
Markdown (Informal)
[RAG based Question Answering of Korean Laws and Precedents](https://aclanthology.org/2025.fever-1.7/) (Seo & Utsuro, FEVER 2025)
ACL