@inproceedings{kulkarni-etal-2025-llm,
title = "{LLM}-Symbolic Integration for Robust Temporal Tabular Reasoning",
author = "Kulkarni, Atharv and
Dixit, Kushagra and
Srikumar, Vivek and
Roth, Dan and
Gupta, Vivek",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1022/",
doi = "10.18653/v1/2025.findings-acl.1022",
pages = "19914--19940",
ISBN = "979-8-89176-256-5",
abstract = "Temporal tabular question answering presents a significant challenge for Large Language Models (LLMs), requiring robust reasoning over structured data{---}a task where traditional prompting methods often fall short. These methods face challenges such as memorization, sensitivity to table size, and reduced performance on complex queries. To overcome these limitations, we introduce TEMPTABQA-C, a synthetic dataset designed for systematic and controlled evaluations, alongside a symbolic intermediate representation that transforms tables into database schemas. This structured approach allows LLMs to generate and execute SQL queries, enhancing generalization and mitigating biases. By incorporating adaptive fewshot prompting with contextually tailored examples, our method achieves superior robustness, scalability, and performance. Experimental results consistently highlight improvements across key challenges, setting a new benchmark for robust temporal reasoning with LLMs. Code and TEMPTABQA-C dataset: https:// coral-lab-asu.github.io/llm{\_}symbolic."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kulkarni-etal-2025-llm">
<titleInfo>
<title>LLM-Symbolic Integration for Robust Temporal Tabular Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atharv</namePart>
<namePart type="family">Kulkarni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kushagra</namePart>
<namePart type="family">Dixit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Temporal tabular question answering presents a significant challenge for Large Language Models (LLMs), requiring robust reasoning over structured data—a task where traditional prompting methods often fall short. These methods face challenges such as memorization, sensitivity to table size, and reduced performance on complex queries. To overcome these limitations, we introduce TEMPTABQA-C, a synthetic dataset designed for systematic and controlled evaluations, alongside a symbolic intermediate representation that transforms tables into database schemas. This structured approach allows LLMs to generate and execute SQL queries, enhancing generalization and mitigating biases. By incorporating adaptive fewshot prompting with contextually tailored examples, our method achieves superior robustness, scalability, and performance. Experimental results consistently highlight improvements across key challenges, setting a new benchmark for robust temporal reasoning with LLMs. Code and TEMPTABQA-C dataset: https:// coral-lab-asu.github.io/llm_symbolic.</abstract>
<identifier type="citekey">kulkarni-etal-2025-llm</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1022</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1022/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>19914</start>
<end>19940</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLM-Symbolic Integration for Robust Temporal Tabular Reasoning
%A Kulkarni, Atharv
%A Dixit, Kushagra
%A Srikumar, Vivek
%A Roth, Dan
%A Gupta, Vivek
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F kulkarni-etal-2025-llm
%X Temporal tabular question answering presents a significant challenge for Large Language Models (LLMs), requiring robust reasoning over structured data—a task where traditional prompting methods often fall short. These methods face challenges such as memorization, sensitivity to table size, and reduced performance on complex queries. To overcome these limitations, we introduce TEMPTABQA-C, a synthetic dataset designed for systematic and controlled evaluations, alongside a symbolic intermediate representation that transforms tables into database schemas. This structured approach allows LLMs to generate and execute SQL queries, enhancing generalization and mitigating biases. By incorporating adaptive fewshot prompting with contextually tailored examples, our method achieves superior robustness, scalability, and performance. Experimental results consistently highlight improvements across key challenges, setting a new benchmark for robust temporal reasoning with LLMs. Code and TEMPTABQA-C dataset: https:// coral-lab-asu.github.io/llm_symbolic.
%R 10.18653/v1/2025.findings-acl.1022
%U https://aclanthology.org/2025.findings-acl.1022/
%U https://doi.org/10.18653/v1/2025.findings-acl.1022
%P 19914-19940
Markdown (Informal)
[LLM-Symbolic Integration for Robust Temporal Tabular Reasoning](https://aclanthology.org/2025.findings-acl.1022/) (Kulkarni et al., Findings 2025)
ACL