@inproceedings{garg-etal-2025-just,
title = "Just {KIDDIN}' : Knowledge Infusion and Distillation for Detection of {IN}decent Memes",
author = "Garg, Rahul and
Padhi, Trilok and
Jain, Hemang and
Kursuncu, Ugur and
Kumaraguru, Ponnurangam",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1184/",
doi = "10.18653/v1/2025.findings-acl.1184",
pages = "23067--23086",
ISBN = "979-8-89176-256-5",
abstract = "Detecting toxicity in online multimodal environments, such as memes, remains a challenging task due to the complex contextual connections across modalities (e.g., text and visual), which demand both common-sense reasoning and contextual awareness. To bridge this gap, we propose a hybrid neurosymbolic framework that unifies (1) distillation of implicit contextual knowledge (e.g., sarcasm, cultural references) from Large Vision-Language Models (LVLMs) and (2) infusion of explicit relational semantics through sub-graphs from Knowledge Graphs (KGs). Experimental results on two benchmark datasets show the superior performance of our approach, \textit{Knowledge-Infused Distilled Vision-Language Model (KID-VLM)}, over the state-of-the-art baselines across AUC and F1, with improvements of 0.5{\%}, and 10.6{\%}, respectively, in HatefulMemes Benchmark across variants. Further, KID-VLM demonstrates better generalizability and achieves the best performance across all baselines in the HarMeme Dataset with a 6.3{\%} and 3.2{\%} in F1 and AUC.Given the contextual complexity of the toxicity detection, KID-VLM showcases the significance of learning compact models ({\textasciitilde}500M parameters) from both explicit (i.e., KG) and implicit (i.e., LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. Our codes and pretrained models are publicly available."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="garg-etal-2025-just">
<titleInfo>
<title>Just KIDDIN’ : Knowledge Infusion and Distillation for Detection of INdecent Memes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Garg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trilok</namePart>
<namePart type="family">Padhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hemang</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ugur</namePart>
<namePart type="family">Kursuncu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ponnurangam</namePart>
<namePart type="family">Kumaraguru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Detecting toxicity in online multimodal environments, such as memes, remains a challenging task due to the complex contextual connections across modalities (e.g., text and visual), which demand both common-sense reasoning and contextual awareness. To bridge this gap, we propose a hybrid neurosymbolic framework that unifies (1) distillation of implicit contextual knowledge (e.g., sarcasm, cultural references) from Large Vision-Language Models (LVLMs) and (2) infusion of explicit relational semantics through sub-graphs from Knowledge Graphs (KGs). Experimental results on two benchmark datasets show the superior performance of our approach, Knowledge-Infused Distilled Vision-Language Model (KID-VLM), over the state-of-the-art baselines across AUC and F1, with improvements of 0.5%, and 10.6%, respectively, in HatefulMemes Benchmark across variants. Further, KID-VLM demonstrates better generalizability and achieves the best performance across all baselines in the HarMeme Dataset with a 6.3% and 3.2% in F1 and AUC.Given the contextual complexity of the toxicity detection, KID-VLM showcases the significance of learning compact models (~500M parameters) from both explicit (i.e., KG) and implicit (i.e., LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. Our codes and pretrained models are publicly available.</abstract>
<identifier type="citekey">garg-etal-2025-just</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1184</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1184/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>23067</start>
<end>23086</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Just KIDDIN’ : Knowledge Infusion and Distillation for Detection of INdecent Memes
%A Garg, Rahul
%A Padhi, Trilok
%A Jain, Hemang
%A Kursuncu, Ugur
%A Kumaraguru, Ponnurangam
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F garg-etal-2025-just
%X Detecting toxicity in online multimodal environments, such as memes, remains a challenging task due to the complex contextual connections across modalities (e.g., text and visual), which demand both common-sense reasoning and contextual awareness. To bridge this gap, we propose a hybrid neurosymbolic framework that unifies (1) distillation of implicit contextual knowledge (e.g., sarcasm, cultural references) from Large Vision-Language Models (LVLMs) and (2) infusion of explicit relational semantics through sub-graphs from Knowledge Graphs (KGs). Experimental results on two benchmark datasets show the superior performance of our approach, Knowledge-Infused Distilled Vision-Language Model (KID-VLM), over the state-of-the-art baselines across AUC and F1, with improvements of 0.5%, and 10.6%, respectively, in HatefulMemes Benchmark across variants. Further, KID-VLM demonstrates better generalizability and achieves the best performance across all baselines in the HarMeme Dataset with a 6.3% and 3.2% in F1 and AUC.Given the contextual complexity of the toxicity detection, KID-VLM showcases the significance of learning compact models (~500M parameters) from both explicit (i.e., KG) and implicit (i.e., LVLMs) contextual cues incorporated through a hybrid neurosymbolic approach. Our codes and pretrained models are publicly available.
%R 10.18653/v1/2025.findings-acl.1184
%U https://aclanthology.org/2025.findings-acl.1184/
%U https://doi.org/10.18653/v1/2025.findings-acl.1184
%P 23067-23086
Markdown (Informal)
[Just KIDDIN’ : Knowledge Infusion and Distillation for Detection of INdecent Memes](https://aclanthology.org/2025.findings-acl.1184/) (Garg et al., Findings 2025)
ACL