@inproceedings{zeng-etal-2025-dynamic,
title = "Dynamic Personality in {LLM} Agents: A Framework for Evolutionary Modeling and Behavioral Analysis in the Prisoner{'}s Dilemma",
author = "Zeng, Weiqi and
Wang, Bo and
Zhao, Dongming and
Qu, Zongfeng and
He, Ruifang and
Hou, Yuexian and
Hu, Qinghua",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1185/",
doi = "10.18653/v1/2025.findings-acl.1185",
pages = "23087--23100",
ISBN = "979-8-89176-256-5",
abstract = "Using Large Language Model agents to simulate human game behaviors offers valuable insights for human social psychology in anthropomorphic AI research. While current models rely on static personality traits, real-world evidence shows personality evolves through environmental feedback. Recent work introduced dynamic personality traits but lacked natural selection processes and direct psychological metrics, failing to accurately capture authentic dynamic personality variations. To address these limitations, we propose an enhanced framework within the Prisoner{'}s Dilemma, a socially significant scenario. By using game payoffs as environmental feedback, we drive adaptive personality evolution and analyze correlations between personality metrics and behavior. Our framework reveals new behavioral patterns of agents and evaluates personality-behavior relationships, advancing agent-based social simulations and human-AI symbiosis research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2025-dynamic">
<titleInfo>
<title>Dynamic Personality in LLM Agents: A Framework for Evolutionary Modeling and Behavioral Analysis in the Prisoner’s Dilemma</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiqi</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongming</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zongfeng</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruifang</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuexian</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qinghua</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Using Large Language Model agents to simulate human game behaviors offers valuable insights for human social psychology in anthropomorphic AI research. While current models rely on static personality traits, real-world evidence shows personality evolves through environmental feedback. Recent work introduced dynamic personality traits but lacked natural selection processes and direct psychological metrics, failing to accurately capture authentic dynamic personality variations. To address these limitations, we propose an enhanced framework within the Prisoner’s Dilemma, a socially significant scenario. By using game payoffs as environmental feedback, we drive adaptive personality evolution and analyze correlations between personality metrics and behavior. Our framework reveals new behavioral patterns of agents and evaluates personality-behavior relationships, advancing agent-based social simulations and human-AI symbiosis research.</abstract>
<identifier type="citekey">zeng-etal-2025-dynamic</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1185</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1185/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>23087</start>
<end>23100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamic Personality in LLM Agents: A Framework for Evolutionary Modeling and Behavioral Analysis in the Prisoner’s Dilemma
%A Zeng, Weiqi
%A Wang, Bo
%A Zhao, Dongming
%A Qu, Zongfeng
%A He, Ruifang
%A Hou, Yuexian
%A Hu, Qinghua
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F zeng-etal-2025-dynamic
%X Using Large Language Model agents to simulate human game behaviors offers valuable insights for human social psychology in anthropomorphic AI research. While current models rely on static personality traits, real-world evidence shows personality evolves through environmental feedback. Recent work introduced dynamic personality traits but lacked natural selection processes and direct psychological metrics, failing to accurately capture authentic dynamic personality variations. To address these limitations, we propose an enhanced framework within the Prisoner’s Dilemma, a socially significant scenario. By using game payoffs as environmental feedback, we drive adaptive personality evolution and analyze correlations between personality metrics and behavior. Our framework reveals new behavioral patterns of agents and evaluates personality-behavior relationships, advancing agent-based social simulations and human-AI symbiosis research.
%R 10.18653/v1/2025.findings-acl.1185
%U https://aclanthology.org/2025.findings-acl.1185/
%U https://doi.org/10.18653/v1/2025.findings-acl.1185
%P 23087-23100
Markdown (Informal)
[Dynamic Personality in LLM Agents: A Framework for Evolutionary Modeling and Behavioral Analysis in the Prisoner’s Dilemma](https://aclanthology.org/2025.findings-acl.1185/) (Zeng et al., Findings 2025)
ACL