@inproceedings{tantakoun-etal-2025-llms,
title = "{LLM}s as Planning Formalizers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models",
author = "Tantakoun, Marcus and
Muise, Christian and
Zhu, Xiaodan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1291/",
doi = "10.18653/v1/2025.findings-acl.1291",
pages = "25167--25188",
ISBN = "979-8-89176-256-5",
abstract = "Large Language Models (LLMs) excel in various natural language tasks but often struggle with long-horizon planning problems requiring structured reasoning. This limitation has drawn interest in integrating neuro-symbolic approaches within the Automated Planning (AP) and Natural Language Processing (NLP) communities. However, identifying optimal AP deployment frameworks can be daunting and introduces new challenges. This paper aims to provide a timely survey of the current research with an in-depth analysis, positioning LLMs as tools for formalizing and refining planning specifications to support reliable off-the-shelf AP planners. By systematically reviewing the current state of research, we highlight methodologies, and identify critical challenges and future directions, hoping to contribute to the joint research on NLP and Automated Planning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tantakoun-etal-2025-llms">
<titleInfo>
<title>LLMs as Planning Formalizers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcus</namePart>
<namePart type="family">Tantakoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Muise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) excel in various natural language tasks but often struggle with long-horizon planning problems requiring structured reasoning. This limitation has drawn interest in integrating neuro-symbolic approaches within the Automated Planning (AP) and Natural Language Processing (NLP) communities. However, identifying optimal AP deployment frameworks can be daunting and introduces new challenges. This paper aims to provide a timely survey of the current research with an in-depth analysis, positioning LLMs as tools for formalizing and refining planning specifications to support reliable off-the-shelf AP planners. By systematically reviewing the current state of research, we highlight methodologies, and identify critical challenges and future directions, hoping to contribute to the joint research on NLP and Automated Planning.</abstract>
<identifier type="citekey">tantakoun-etal-2025-llms</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1291</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1291/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>25167</start>
<end>25188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLMs as Planning Formalizers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models
%A Tantakoun, Marcus
%A Muise, Christian
%A Zhu, Xiaodan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F tantakoun-etal-2025-llms
%X Large Language Models (LLMs) excel in various natural language tasks but often struggle with long-horizon planning problems requiring structured reasoning. This limitation has drawn interest in integrating neuro-symbolic approaches within the Automated Planning (AP) and Natural Language Processing (NLP) communities. However, identifying optimal AP deployment frameworks can be daunting and introduces new challenges. This paper aims to provide a timely survey of the current research with an in-depth analysis, positioning LLMs as tools for formalizing and refining planning specifications to support reliable off-the-shelf AP planners. By systematically reviewing the current state of research, we highlight methodologies, and identify critical challenges and future directions, hoping to contribute to the joint research on NLP and Automated Planning.
%R 10.18653/v1/2025.findings-acl.1291
%U https://aclanthology.org/2025.findings-acl.1291/
%U https://doi.org/10.18653/v1/2025.findings-acl.1291
%P 25167-25188
Markdown (Informal)
[LLMs as Planning Formalizers: A Survey for Leveraging Large Language Models to Construct Automated Planning Models](https://aclanthology.org/2025.findings-acl.1291/) (Tantakoun et al., Findings 2025)
ACL