@inproceedings{bodke-etal-2025-pastel,
title = "{PASTEL} : Polarity-Aware Sentiment Triplet Extraction with {LLM}-as-a-Judge",
author = "Bodke, Aaditya and
Kohli, Avinoor Singh and
Pardeshi, Hemant Subhash and
Bhosale, Prathamesh",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1309/",
doi = "10.18653/v1/2025.findings-acl.1309",
pages = "25523--25533",
ISBN = "979-8-89176-256-5",
abstract = "Aspect Sentiment Triplet Extraction (ASTE) is a subtask of Aspect-Based Sentiment Analysis (ABSA) that aims to extract aspect terms, corresponding opinion terms, and their associated sentiment polarities from text. Current end-to-end approaches, whether employing Large Language Models (LLMs) or complex neural network structures, struggle to effectively model the intricate latent relationships between aspects and opinions. Therefore, in this work, we propose Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-judge (PASTEL), a novel pipeline that decomposes the ASTE task into structured subtasks. We employ finetuned LLMs to separately extract the aspect and opinion terms, incorporating a polarity-aware mechanism to enhance opinion extraction. After generating a candidate set through the Cartesian product of the extracted aspect and opinion-sentiment sets, we leverage an LLM-as-a-Judge to validate and prune these candidates. Experimental evaluations demonstrate that PASTEL outperforms existing baselines. Our findings highlight the necessity of modular decomposition in complex sentiment analysis tasks to fully exploit the capabilities of current LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bodke-etal-2025-pastel">
<titleInfo>
<title>PASTEL : Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-Judge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aaditya</namePart>
<namePart type="family">Bodke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avinoor</namePart>
<namePart type="given">Singh</namePart>
<namePart type="family">Kohli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hemant</namePart>
<namePart type="given">Subhash</namePart>
<namePart type="family">Pardeshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prathamesh</namePart>
<namePart type="family">Bhosale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Aspect Sentiment Triplet Extraction (ASTE) is a subtask of Aspect-Based Sentiment Analysis (ABSA) that aims to extract aspect terms, corresponding opinion terms, and their associated sentiment polarities from text. Current end-to-end approaches, whether employing Large Language Models (LLMs) or complex neural network structures, struggle to effectively model the intricate latent relationships between aspects and opinions. Therefore, in this work, we propose Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-judge (PASTEL), a novel pipeline that decomposes the ASTE task into structured subtasks. We employ finetuned LLMs to separately extract the aspect and opinion terms, incorporating a polarity-aware mechanism to enhance opinion extraction. After generating a candidate set through the Cartesian product of the extracted aspect and opinion-sentiment sets, we leverage an LLM-as-a-Judge to validate and prune these candidates. Experimental evaluations demonstrate that PASTEL outperforms existing baselines. Our findings highlight the necessity of modular decomposition in complex sentiment analysis tasks to fully exploit the capabilities of current LLMs.</abstract>
<identifier type="citekey">bodke-etal-2025-pastel</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1309</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1309/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>25523</start>
<end>25533</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PASTEL : Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-Judge
%A Bodke, Aaditya
%A Kohli, Avinoor Singh
%A Pardeshi, Hemant Subhash
%A Bhosale, Prathamesh
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F bodke-etal-2025-pastel
%X Aspect Sentiment Triplet Extraction (ASTE) is a subtask of Aspect-Based Sentiment Analysis (ABSA) that aims to extract aspect terms, corresponding opinion terms, and their associated sentiment polarities from text. Current end-to-end approaches, whether employing Large Language Models (LLMs) or complex neural network structures, struggle to effectively model the intricate latent relationships between aspects and opinions. Therefore, in this work, we propose Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-judge (PASTEL), a novel pipeline that decomposes the ASTE task into structured subtasks. We employ finetuned LLMs to separately extract the aspect and opinion terms, incorporating a polarity-aware mechanism to enhance opinion extraction. After generating a candidate set through the Cartesian product of the extracted aspect and opinion-sentiment sets, we leverage an LLM-as-a-Judge to validate and prune these candidates. Experimental evaluations demonstrate that PASTEL outperforms existing baselines. Our findings highlight the necessity of modular decomposition in complex sentiment analysis tasks to fully exploit the capabilities of current LLMs.
%R 10.18653/v1/2025.findings-acl.1309
%U https://aclanthology.org/2025.findings-acl.1309/
%U https://doi.org/10.18653/v1/2025.findings-acl.1309
%P 25523-25533
Markdown (Informal)
[PASTEL : Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-Judge](https://aclanthology.org/2025.findings-acl.1309/) (Bodke et al., Findings 2025)
ACL