@inproceedings{ye-tang-2025-one,
title = "One-for-All Pruning: A Universal Model for Customized Compression of Large Language Models",
author = "Ye, Rongguang and
Tang, Ming",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.132/",
doi = "10.18653/v1/2025.findings-acl.132",
pages = "2591--2604",
ISBN = "979-8-89176-256-5",
abstract = "Existing pruning methods for large language models (LLMs) focus on achieving high compression rates while maintaining model performance. Although these methods have demonstrated satisfactory performance in handling a single user{'}s compression request, their processing time increases linearly with the number of requests, making them inefficient for real-world scenarios with multiple simultaneous requests. To address this limitation, we propose a Univeral Model for Customized Compression (UniCuCo) for LLMs, which introduces a StratNet that learns to map arbitrary requests to their optimal pruning strategy. The challenge in training StratNet lies in the high computational cost of evaluating pruning strategies and the non-differentiable nature of the pruning process, which hinders gradient backpropagation for StratNet updates. To overcome these challenges, we leverage a Gaussian process to approximate the evaluation process. Since the gradient of the Gaussian process is computable, we can use it to approximate the gradient of the non-differentiable pruning process, thereby enabling StratNet updates. Experimental results show that UniCuCo is 28 times faster than baselines in processing 64 requests, while maintaining comparable accuracy to baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ye-tang-2025-one">
<titleInfo>
<title>One-for-All Pruning: A Universal Model for Customized Compression of Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rongguang</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Existing pruning methods for large language models (LLMs) focus on achieving high compression rates while maintaining model performance. Although these methods have demonstrated satisfactory performance in handling a single user’s compression request, their processing time increases linearly with the number of requests, making them inefficient for real-world scenarios with multiple simultaneous requests. To address this limitation, we propose a Univeral Model for Customized Compression (UniCuCo) for LLMs, which introduces a StratNet that learns to map arbitrary requests to their optimal pruning strategy. The challenge in training StratNet lies in the high computational cost of evaluating pruning strategies and the non-differentiable nature of the pruning process, which hinders gradient backpropagation for StratNet updates. To overcome these challenges, we leverage a Gaussian process to approximate the evaluation process. Since the gradient of the Gaussian process is computable, we can use it to approximate the gradient of the non-differentiable pruning process, thereby enabling StratNet updates. Experimental results show that UniCuCo is 28 times faster than baselines in processing 64 requests, while maintaining comparable accuracy to baselines.</abstract>
<identifier type="citekey">ye-tang-2025-one</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.132</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.132/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2591</start>
<end>2604</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T One-for-All Pruning: A Universal Model for Customized Compression of Large Language Models
%A Ye, Rongguang
%A Tang, Ming
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F ye-tang-2025-one
%X Existing pruning methods for large language models (LLMs) focus on achieving high compression rates while maintaining model performance. Although these methods have demonstrated satisfactory performance in handling a single user’s compression request, their processing time increases linearly with the number of requests, making them inefficient for real-world scenarios with multiple simultaneous requests. To address this limitation, we propose a Univeral Model for Customized Compression (UniCuCo) for LLMs, which introduces a StratNet that learns to map arbitrary requests to their optimal pruning strategy. The challenge in training StratNet lies in the high computational cost of evaluating pruning strategies and the non-differentiable nature of the pruning process, which hinders gradient backpropagation for StratNet updates. To overcome these challenges, we leverage a Gaussian process to approximate the evaluation process. Since the gradient of the Gaussian process is computable, we can use it to approximate the gradient of the non-differentiable pruning process, thereby enabling StratNet updates. Experimental results show that UniCuCo is 28 times faster than baselines in processing 64 requests, while maintaining comparable accuracy to baselines.
%R 10.18653/v1/2025.findings-acl.132
%U https://aclanthology.org/2025.findings-acl.132/
%U https://doi.org/10.18653/v1/2025.findings-acl.132
%P 2591-2604
Markdown (Informal)
[One-for-All Pruning: A Universal Model for Customized Compression of Large Language Models](https://aclanthology.org/2025.findings-acl.132/) (Ye & Tang, Findings 2025)
ACL