@inproceedings{kim-etal-2025-blinded,
title = "Blinded by Context: Unveiling the Halo Effect of {MLLM} in {AI} Hiring",
author = "Kim, Kyusik and
Ryu, Jeongwoo and
Jeon, Hyeonseok and
Suh, Bongwon",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1338/",
doi = "10.18653/v1/2025.findings-acl.1338",
pages = "26067--26113",
ISBN = "979-8-89176-256-5",
abstract = "This study investigates the halo effect in AI-driven hiring evaluations using Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Through experiments with hypothetical job applications, we examined how these models' evaluations are influenced by non-job-related information, including extracurricular activities and social media images. By analyzing models' responses to Likert-scale questions across different competency dimensions, we found that AI models exhibit significant halo effects, particularly in image-based evaluations, while text-based assessments showed more resistance to bias. The findings demonstrate that supplementary multimodal information can substantially influence AI hiring decisions, highlighting potential risks in AI-based recruitment systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2025-blinded">
<titleInfo>
<title>Blinded by Context: Unveiling the Halo Effect of MLLM in AI Hiring</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kyusik</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeongwoo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyeonseok</namePart>
<namePart type="family">Jeon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bongwon</namePart>
<namePart type="family">Suh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>This study investigates the halo effect in AI-driven hiring evaluations using Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Through experiments with hypothetical job applications, we examined how these models’ evaluations are influenced by non-job-related information, including extracurricular activities and social media images. By analyzing models’ responses to Likert-scale questions across different competency dimensions, we found that AI models exhibit significant halo effects, particularly in image-based evaluations, while text-based assessments showed more resistance to bias. The findings demonstrate that supplementary multimodal information can substantially influence AI hiring decisions, highlighting potential risks in AI-based recruitment systems.</abstract>
<identifier type="citekey">kim-etal-2025-blinded</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1338</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1338/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>26067</start>
<end>26113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Blinded by Context: Unveiling the Halo Effect of MLLM in AI Hiring
%A Kim, Kyusik
%A Ryu, Jeongwoo
%A Jeon, Hyeonseok
%A Suh, Bongwon
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F kim-etal-2025-blinded
%X This study investigates the halo effect in AI-driven hiring evaluations using Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Through experiments with hypothetical job applications, we examined how these models’ evaluations are influenced by non-job-related information, including extracurricular activities and social media images. By analyzing models’ responses to Likert-scale questions across different competency dimensions, we found that AI models exhibit significant halo effects, particularly in image-based evaluations, while text-based assessments showed more resistance to bias. The findings demonstrate that supplementary multimodal information can substantially influence AI hiring decisions, highlighting potential risks in AI-based recruitment systems.
%R 10.18653/v1/2025.findings-acl.1338
%U https://aclanthology.org/2025.findings-acl.1338/
%U https://doi.org/10.18653/v1/2025.findings-acl.1338
%P 26067-26113
Markdown (Informal)
[Blinded by Context: Unveiling the Halo Effect of MLLM in AI Hiring](https://aclanthology.org/2025.findings-acl.1338/) (Kim et al., Findings 2025)
ACL