@inproceedings{trainin-abend-2025-t5score,
title = "$T^5Score$: A Methodology for Automatically Assessing the Quality of {LLM} Generated Multi-Document Topic Sets",
author = "Trainin, Itamar and
Abend, Omri",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1351/",
doi = "10.18653/v1/2025.findings-acl.1351",
pages = "26347--26375",
ISBN = "979-8-89176-256-5",
abstract = "Using LLMs for Multi-Document Topic Extraction has recently gained popularity due to their apparent high-quality outputs, expressiveness, and ease of use. However, most existing evaluation practices are not designed for LLM-generated topics and result in low inter-annotator agreement scores, hindering the reliable use of LLMs for the task. To address this, we introduce $T^5Score$, an evaluation methodology that decomposes the quality of a topic set into quantifiable aspects, measurable through easy-to-perform annotation tasks. This framing enables a convenient, manual or automatic, evaluation procedure resulting in a strong inter-annotator agreement score.To substantiate our methodology and claims, we perform extensive experimentation on multiple datasets and report the results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trainin-abend-2025-t5score">
<titleInfo>
<title>T⁵Score: A Methodology for Automatically Assessing the Quality of LLM Generated Multi-Document Topic Sets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Itamar</namePart>
<namePart type="family">Trainin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Using LLMs for Multi-Document Topic Extraction has recently gained popularity due to their apparent high-quality outputs, expressiveness, and ease of use. However, most existing evaluation practices are not designed for LLM-generated topics and result in low inter-annotator agreement scores, hindering the reliable use of LLMs for the task. To address this, we introduce T⁵Score, an evaluation methodology that decomposes the quality of a topic set into quantifiable aspects, measurable through easy-to-perform annotation tasks. This framing enables a convenient, manual or automatic, evaluation procedure resulting in a strong inter-annotator agreement score.To substantiate our methodology and claims, we perform extensive experimentation on multiple datasets and report the results.</abstract>
<identifier type="citekey">trainin-abend-2025-t5score</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1351</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1351/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>26347</start>
<end>26375</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T T⁵Score: A Methodology for Automatically Assessing the Quality of LLM Generated Multi-Document Topic Sets
%A Trainin, Itamar
%A Abend, Omri
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F trainin-abend-2025-t5score
%X Using LLMs for Multi-Document Topic Extraction has recently gained popularity due to their apparent high-quality outputs, expressiveness, and ease of use. However, most existing evaluation practices are not designed for LLM-generated topics and result in low inter-annotator agreement scores, hindering the reliable use of LLMs for the task. To address this, we introduce T⁵Score, an evaluation methodology that decomposes the quality of a topic set into quantifiable aspects, measurable through easy-to-perform annotation tasks. This framing enables a convenient, manual or automatic, evaluation procedure resulting in a strong inter-annotator agreement score.To substantiate our methodology and claims, we perform extensive experimentation on multiple datasets and report the results.
%R 10.18653/v1/2025.findings-acl.1351
%U https://aclanthology.org/2025.findings-acl.1351/
%U https://doi.org/10.18653/v1/2025.findings-acl.1351
%P 26347-26375
Markdown (Informal)
[T5Score: A Methodology for Automatically Assessing the Quality of LLM Generated Multi-Document Topic Sets](https://aclanthology.org/2025.findings-acl.1351/) (Trainin & Abend, Findings 2025)
ACL