@inproceedings{jain-etal-2025-complexity,
title = "From Complexity to Clarity: {AI}/{NLP}{'}s Role in Regulatory Compliance",
author = "Jain, Jivitesh and
Dhanasekaran, Nivedhitha and
Diab, Mona T.",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1366/",
doi = "10.18653/v1/2025.findings-acl.1366",
pages = "26629--26641",
ISBN = "979-8-89176-256-5",
abstract = "Regulatory data compliance is a cornerstone of trust and accountability in critical sectors like finance, healthcare, and technology, yet its complexity poses significant challenges for organizations worldwide. Recent advances in natural language processing, particularly large language models, have demonstrated remarkable capabilities in text analysis and reasoning, offering promising solutions for automating compliance processes. This survey examines the current state of automated data compliance, analyzing key challenges and approaches across problem areas. We identify critical limitations in current datasets and techniques, including issues of adaptability, completeness, and trust. Looking ahead, we propose research directions to address these challenges, emphasizing standardized evaluation frameworks and balanced human-AI collaboration."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jain-etal-2025-complexity">
<titleInfo>
<title>From Complexity to Clarity: AI/NLP’s Role in Regulatory Compliance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jivitesh</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nivedhitha</namePart>
<namePart type="family">Dhanasekaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Regulatory data compliance is a cornerstone of trust and accountability in critical sectors like finance, healthcare, and technology, yet its complexity poses significant challenges for organizations worldwide. Recent advances in natural language processing, particularly large language models, have demonstrated remarkable capabilities in text analysis and reasoning, offering promising solutions for automating compliance processes. This survey examines the current state of automated data compliance, analyzing key challenges and approaches across problem areas. We identify critical limitations in current datasets and techniques, including issues of adaptability, completeness, and trust. Looking ahead, we propose research directions to address these challenges, emphasizing standardized evaluation frameworks and balanced human-AI collaboration.</abstract>
<identifier type="citekey">jain-etal-2025-complexity</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1366</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1366/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>26629</start>
<end>26641</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Complexity to Clarity: AI/NLP’s Role in Regulatory Compliance
%A Jain, Jivitesh
%A Dhanasekaran, Nivedhitha
%A Diab, Mona T.
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F jain-etal-2025-complexity
%X Regulatory data compliance is a cornerstone of trust and accountability in critical sectors like finance, healthcare, and technology, yet its complexity poses significant challenges for organizations worldwide. Recent advances in natural language processing, particularly large language models, have demonstrated remarkable capabilities in text analysis and reasoning, offering promising solutions for automating compliance processes. This survey examines the current state of automated data compliance, analyzing key challenges and approaches across problem areas. We identify critical limitations in current datasets and techniques, including issues of adaptability, completeness, and trust. Looking ahead, we propose research directions to address these challenges, emphasizing standardized evaluation frameworks and balanced human-AI collaboration.
%R 10.18653/v1/2025.findings-acl.1366
%U https://aclanthology.org/2025.findings-acl.1366/
%U https://doi.org/10.18653/v1/2025.findings-acl.1366
%P 26629-26641
Markdown (Informal)
[From Complexity to Clarity: AI/NLP’s Role in Regulatory Compliance](https://aclanthology.org/2025.findings-acl.1366/) (Jain et al., Findings 2025)
ACL