@inproceedings{maji-etal-2025-sanskriti,
title = "{SANSKRITI}: A Comprehensive Benchmark for Evaluating Language Models' Knowledge of {I}ndian Culture",
author = "Maji, Arijit and
Kumar, Raghvendra and
Ghosh, Akash and
Anushka, Anushka and
Saha, Sriparna",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.228/",
doi = "10.18653/v1/2025.findings-acl.228",
pages = "4434--4451",
ISBN = "979-8-89176-256-5",
abstract = "Language models (LMs) are indispensable tools shaping modern workflows, but their global effectiveness depends on understanding local socio-cultural contexts. To address this, we introduce \textit{ \textbf{SANSKRITI}}, a benchmark designed to evaluate language models' comprehension of India{'}s rich cultural diversity. Comprising of 21,853 meticulously curated question-answer pairs spanning 28 states and 8 union territories, \textit{ \textbf{SANSKRITI}} is the largest dataset for testing Indian cultural knowledge. It covers sixteen key attributes of Indian culture namely rituals and ceremonies, history, tourism, cuisine, dance and music, costume, language, art, festivals, religion, medicine, transport, sports, nightlife and personalities, providing a comprehensive representation of India{'}s cultural tapestry. We evaluate \textit{ \textbf{SANSKRITI}} on leading Large Language Models (LLMs), Indic Language Models (ILMs), and Small Language Models(SLMs), revealing significant disparities in their ability to handle culturally nuanced queries, with many models struggling in region-specific contexts. By offering an extensive, culturally rich, and diverse dataset, \textit{ \textbf{SANSKRITI}} sets a new standard for assessing and improving the cultural understanding of LMs. We will share the dataset and findings publicly to support research on inclusive and culturally aware AI systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maji-etal-2025-sanskriti">
<titleInfo>
<title>SANSKRITI: A Comprehensive Benchmark for Evaluating Language Models’ Knowledge of Indian Culture</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arijit</namePart>
<namePart type="family">Maji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raghvendra</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akash</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anushka</namePart>
<namePart type="family">Anushka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sriparna</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Language models (LMs) are indispensable tools shaping modern workflows, but their global effectiveness depends on understanding local socio-cultural contexts. To address this, we introduce SANSKRITI, a benchmark designed to evaluate language models’ comprehension of India’s rich cultural diversity. Comprising of 21,853 meticulously curated question-answer pairs spanning 28 states and 8 union territories, SANSKRITI is the largest dataset for testing Indian cultural knowledge. It covers sixteen key attributes of Indian culture namely rituals and ceremonies, history, tourism, cuisine, dance and music, costume, language, art, festivals, religion, medicine, transport, sports, nightlife and personalities, providing a comprehensive representation of India’s cultural tapestry. We evaluate SANSKRITI on leading Large Language Models (LLMs), Indic Language Models (ILMs), and Small Language Models(SLMs), revealing significant disparities in their ability to handle culturally nuanced queries, with many models struggling in region-specific contexts. By offering an extensive, culturally rich, and diverse dataset, SANSKRITI sets a new standard for assessing and improving the cultural understanding of LMs. We will share the dataset and findings publicly to support research on inclusive and culturally aware AI systems.</abstract>
<identifier type="citekey">maji-etal-2025-sanskriti</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.228</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.228/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>4434</start>
<end>4451</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SANSKRITI: A Comprehensive Benchmark for Evaluating Language Models’ Knowledge of Indian Culture
%A Maji, Arijit
%A Kumar, Raghvendra
%A Ghosh, Akash
%A Anushka, Anushka
%A Saha, Sriparna
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F maji-etal-2025-sanskriti
%X Language models (LMs) are indispensable tools shaping modern workflows, but their global effectiveness depends on understanding local socio-cultural contexts. To address this, we introduce SANSKRITI, a benchmark designed to evaluate language models’ comprehension of India’s rich cultural diversity. Comprising of 21,853 meticulously curated question-answer pairs spanning 28 states and 8 union territories, SANSKRITI is the largest dataset for testing Indian cultural knowledge. It covers sixteen key attributes of Indian culture namely rituals and ceremonies, history, tourism, cuisine, dance and music, costume, language, art, festivals, religion, medicine, transport, sports, nightlife and personalities, providing a comprehensive representation of India’s cultural tapestry. We evaluate SANSKRITI on leading Large Language Models (LLMs), Indic Language Models (ILMs), and Small Language Models(SLMs), revealing significant disparities in their ability to handle culturally nuanced queries, with many models struggling in region-specific contexts. By offering an extensive, culturally rich, and diverse dataset, SANSKRITI sets a new standard for assessing and improving the cultural understanding of LMs. We will share the dataset and findings publicly to support research on inclusive and culturally aware AI systems.
%R 10.18653/v1/2025.findings-acl.228
%U https://aclanthology.org/2025.findings-acl.228/
%U https://doi.org/10.18653/v1/2025.findings-acl.228
%P 4434-4451
Markdown (Informal)
[SANSKRITI: A Comprehensive Benchmark for Evaluating Language Models’ Knowledge of Indian Culture](https://aclanthology.org/2025.findings-acl.228/) (Maji et al., Findings 2025)
ACL