@inproceedings{liu-etal-2025-chain-methodologies,
title = "Chain of Methodologies: Scaling Test Time Computation without Training",
author = "Liu, Cong and
Wu, Jie and
Wu, Weigang and
Chen, Xu and
Lin, Liang and
Zheng, Wei-Shi",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.276/",
doi = "10.18653/v1/2025.findings-acl.276",
pages = "5298--5312",
ISBN = "979-8-89176-256-5",
abstract = "Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data, which are frequently absent in publicly available documents. This paper introduces the Chain of Methodologies (CoM), a simple and innovative iterative prompting framework designed to build structured reasoning processes by injecting human methodological insights, thereby enabling LLMs to perform long and effective reasoning for complex tasks. Assuming that LLMs possess certain metacognitive abilities, CoM leverages user-defined methodologies to stimulate the cognitive insights that LLMs have learned implicitly from training data. Experimental results indicate that CoM outperforms competitive baselines, highlighting the potential of training-free prompting methods as general solutions for complex reasoning tasks and the possibility of incorporating human-like methodological insights to bridge the gap to human-level reasoning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-chain-methodologies">
<titleInfo>
<title>Chain of Methodologies: Scaling Test Time Computation without Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weigang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Shi</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data, which are frequently absent in publicly available documents. This paper introduces the Chain of Methodologies (CoM), a simple and innovative iterative prompting framework designed to build structured reasoning processes by injecting human methodological insights, thereby enabling LLMs to perform long and effective reasoning for complex tasks. Assuming that LLMs possess certain metacognitive abilities, CoM leverages user-defined methodologies to stimulate the cognitive insights that LLMs have learned implicitly from training data. Experimental results indicate that CoM outperforms competitive baselines, highlighting the potential of training-free prompting methods as general solutions for complex reasoning tasks and the possibility of incorporating human-like methodological insights to bridge the gap to human-level reasoning.</abstract>
<identifier type="citekey">liu-etal-2025-chain-methodologies</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.276</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.276/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>5298</start>
<end>5312</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chain of Methodologies: Scaling Test Time Computation without Training
%A Liu, Cong
%A Wu, Jie
%A Wu, Weigang
%A Chen, Xu
%A Lin, Liang
%A Zheng, Wei-Shi
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F liu-etal-2025-chain-methodologies
%X Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data, which are frequently absent in publicly available documents. This paper introduces the Chain of Methodologies (CoM), a simple and innovative iterative prompting framework designed to build structured reasoning processes by injecting human methodological insights, thereby enabling LLMs to perform long and effective reasoning for complex tasks. Assuming that LLMs possess certain metacognitive abilities, CoM leverages user-defined methodologies to stimulate the cognitive insights that LLMs have learned implicitly from training data. Experimental results indicate that CoM outperforms competitive baselines, highlighting the potential of training-free prompting methods as general solutions for complex reasoning tasks and the possibility of incorporating human-like methodological insights to bridge the gap to human-level reasoning.
%R 10.18653/v1/2025.findings-acl.276
%U https://aclanthology.org/2025.findings-acl.276/
%U https://doi.org/10.18653/v1/2025.findings-acl.276
%P 5298-5312
Markdown (Informal)
[Chain of Methodologies: Scaling Test Time Computation without Training](https://aclanthology.org/2025.findings-acl.276/) (Liu et al., Findings 2025)
ACL