@inproceedings{chen-etal-2025-cross,
title = "Cross-lingual Multimodal Sentiment Analysis for Low-Resource Languages via Language Family Disentanglement and Rethinking Transfer",
author = "Chen, Long and
Guan, Shuoyu and
Huang, Xiaohua and
Wang, Wen-Jing and
Xu, Cai and
Guan, Ziyu and
Zhao, Wei",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.338/",
doi = "10.18653/v1/2025.findings-acl.338",
pages = "6513--6522",
ISBN = "979-8-89176-256-5",
abstract = "Existing multimodal sentiment analysis (MSA) methods have achieved significant success, leveraging cross-modal large-scale models (LLMs) and extensive pre-training data. However, these methods struggle to handle MSA tasks in low-resource languages. While multilingual LLMs enable cross-lingual transfer, they are limited to textual data and cannot address multimodal scenarios. To achieve MSA in low-resource languages, we propose a novel transfer learning framework named Language Family Disentanglement and Rethinking Transfer (LFD-RT). During pre-training, we establish cross-lingual and cross-modal alignments, followed by a language family disentanglement module that enhances the sharing of language universals within families while reducing noise from cross-family alignments. We propose a rethinking strategy for unsupervised fine-tuning that adapts the pre-trained model to MSA tasks in low-resource languages. Experimental results demonstrate the superiority of our method and its strong language-transfer capability on target low-resource languages. We commit to making our code and data publicly available, and the access link will be provided here."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-cross">
<titleInfo>
<title>Cross-lingual Multimodal Sentiment Analysis for Low-Resource Languages via Language Family Disentanglement and Rethinking Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Long</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuoyu</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaohua</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Jing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cai</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyu</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Existing multimodal sentiment analysis (MSA) methods have achieved significant success, leveraging cross-modal large-scale models (LLMs) and extensive pre-training data. However, these methods struggle to handle MSA tasks in low-resource languages. While multilingual LLMs enable cross-lingual transfer, they are limited to textual data and cannot address multimodal scenarios. To achieve MSA in low-resource languages, we propose a novel transfer learning framework named Language Family Disentanglement and Rethinking Transfer (LFD-RT). During pre-training, we establish cross-lingual and cross-modal alignments, followed by a language family disentanglement module that enhances the sharing of language universals within families while reducing noise from cross-family alignments. We propose a rethinking strategy for unsupervised fine-tuning that adapts the pre-trained model to MSA tasks in low-resource languages. Experimental results demonstrate the superiority of our method and its strong language-transfer capability on target low-resource languages. We commit to making our code and data publicly available, and the access link will be provided here.</abstract>
<identifier type="citekey">chen-etal-2025-cross</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.338</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.338/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>6513</start>
<end>6522</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Multimodal Sentiment Analysis for Low-Resource Languages via Language Family Disentanglement and Rethinking Transfer
%A Chen, Long
%A Guan, Shuoyu
%A Huang, Xiaohua
%A Wang, Wen-Jing
%A Xu, Cai
%A Guan, Ziyu
%A Zhao, Wei
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F chen-etal-2025-cross
%X Existing multimodal sentiment analysis (MSA) methods have achieved significant success, leveraging cross-modal large-scale models (LLMs) and extensive pre-training data. However, these methods struggle to handle MSA tasks in low-resource languages. While multilingual LLMs enable cross-lingual transfer, they are limited to textual data and cannot address multimodal scenarios. To achieve MSA in low-resource languages, we propose a novel transfer learning framework named Language Family Disentanglement and Rethinking Transfer (LFD-RT). During pre-training, we establish cross-lingual and cross-modal alignments, followed by a language family disentanglement module that enhances the sharing of language universals within families while reducing noise from cross-family alignments. We propose a rethinking strategy for unsupervised fine-tuning that adapts the pre-trained model to MSA tasks in low-resource languages. Experimental results demonstrate the superiority of our method and its strong language-transfer capability on target low-resource languages. We commit to making our code and data publicly available, and the access link will be provided here.
%R 10.18653/v1/2025.findings-acl.338
%U https://aclanthology.org/2025.findings-acl.338/
%U https://doi.org/10.18653/v1/2025.findings-acl.338
%P 6513-6522
Markdown (Informal)
[Cross-lingual Multimodal Sentiment Analysis for Low-Resource Languages via Language Family Disentanglement and Rethinking Transfer](https://aclanthology.org/2025.findings-acl.338/) (Chen et al., Findings 2025)
ACL