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Abstract

Large language models (LLMs) have exhib-
ited impressive zero-shot performance on infer-
ence tasks. However, LLMs may suffer from
spurious correlations between input texts and
output labels, which limits LLMs’ ability to
reason based purely on general language un-
derstanding. For example, in the natural lan-
guage inference (NLI) task, LLMs may make
predictions primarily based on premise or hy-
pothesis, rather than both components. To ad-
dress this problem that may lead to unexpected
performance degradation, we propose task cal-
ibration (TC), a zero-shot and inference-only
calibration method inspired by mutual informa-
tion which recovers LLM performance through
task reformulation. In NLI, TC encourages
LLMs to reason based on both premise and
hypothesis, while mitigating the models’ over-
reliance on individual premise or hypothesis for
inference. Experimental results show that TC
achieves a substantial improvement on 13 dif-
ferent benchmarks in the zero-shot setup. We
further validate the effectiveness of TC in few-
shot setups and various natural language under-
standing tasks. Further analysis indicates that
TC is also robust to prompt templates and has
the potential to be integrated with other calibra-
tion methods. We publicly release our code to
facilitate future research1.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Luo et al., 2023; Chowdhery et al., 2024;
Abdin et al., 2024; Yan et al., 2024) have demon-
strated strong generalization ability in a wide range
of downstream tasks. In particular, prompt-based
learning (Yu et al., 2024; Yan et al., 2025) has
been an effective paradigm, enabling zero-shot or
few-shot learning (Brown et al., 2020; Liu et al.,
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2023). Ideally, an LLM with advanced language un-
derstanding capabilities could perform a new task
such as natural language inference (NLI) in a zero-
shot setting without relying on annotated examples.
However, research has shown that zero-shot capa-
bilities of LLMs on inference tasks are currently
constrained by the presence of spurious correla-
tions that often lead to biased prediction (McKenna
et al., 2023).

To mitigate spurious correlations, previous work
(Zhao et al., 2021; Holtzman et al., 2021; Fei et al.,
2023; Han et al., 2023; Zhou et al., 2024) has
explored model calibration, which reweighs out-
put probabilities based on various bias estimators.
However, existing calibration methods fall short of
addressing the bias that stems from LLMs’ over-
reliance on certain parts of the context for predic-
tion (McKenna et al., 2023), which we call context
preference bias. In NLI, the parts of the context
can be the premise and the hypothesis. In stance
detection, the parts of the context can be the text
and the topic. For convenience, we use NLI as the
main target for discussion in this paper, despite that
this bias can be also observed in other tasks. Figure
1 shows an example from QNLI dataset (Rajpurkar
et al., 2016), where the task is to determine whether
a given context sentence contains the answer to a
given question. We observe that the model predic-
tion is incorrect because it relies excessively on the
question itself when making the prediction.

To address the content preference bias, we
propose task calibration (TC), a zero-shot and
inference-only calibration method. Our work is in-
spired by mutual information (Tishby et al., 1999;
Peng et al., 2005). Intuitively, for an NLI task,
proper use of mutual information can reveal how
much more informative the combined presence of
premise and hypothesis is concerning the label,
compared to their individual presences. Based
on this insight, we reformulate LLM inference
by factoring out the probabilities of premise-only
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Figure 1: An example from QNLI dataset (Rajpurkar et al., 2016). Sentence-Only, Question-Only and Both indicate
the inputs with only the sentence, question and using both components, respectively. While the initial model
prediction is incorrect, potentially due to the influence of the question, we observe that task calibration finally leads
to a correct prediction.

and hypothesis-only inputs. TC requires no anno-
tated data and is easy to implement, involving only
two extra inference stages using premise-only and
hypothesis-only inputs for each sample. As shown
in Figure 1, although the model’s initial answer
is incorrect, it finally makes the correct prediction
after task calibration, by using output probabili-
ties derived from sentence-only, question-only, and
combined inputs.

Experimental results demonstrate superior per-
formance of TC over other calibration methods
in the zero-shot setup, showcasing a noteworthy
boost of two LLMs on 13 classification datasets.
Specifically, TC outperforms the best-performing
baseline in 12 and 10 out of 13 datasets on the
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and
Phi-3-mini-4k-instruct (Abdin et al., 2024) models,
respectively. In addition, TC is robust to various
prompt templates, demonstrating its effectiveness
in few-shot setups and 4 different natural language
understanding (NLU) benchmarks. Finally, we find
that the combination of TC and other calibration
methods can yield better performance, which indi-
cates their complementary strengths in fixing spuri-
ous correlations.

To summarize, our contributions are as follows:

• We are the first to consider the synergistic
effect of parts of the context over their indi-
vidual effects in model calibration.

• We propose task calibration (TC), a zero-shot
and inference-only calibration method, which
alleviates the context preference bias.

• We show that TC achieves state-of-the-art per-
formance on 13 different benchmarks in the
zero-shot setup. TC is robust to prompt tem-
plates, and also demonstrates its effectiveness

in few-shot setups and 4 different NLU bench-
marks.

2 Related Work

Spurious Correlations in Inference Tasks. The
issue of spurious correlations between labels and
some input signals has attracted considerable at-
tention in the NLP field. It has been shown that a
model that only has access to the hypothesis can
perform surprisingly well on NLI tasks, suggest-
ing the existence of hypothesis-only bias within
the datasets (Poliak et al., 2018; Gururangan et al.,
2018; Tsuchiya, 2018; Glockner et al., 2018). Sim-
ilar bias can be observed in QA (Kaushik and
Lipton, 2018; Patel et al., 2021), fact verifica-
tion (Schuster et al., 2019) and stance detection
(Kaushal et al., 2021) tasks, where models can
achieve remarkable performance without consid-
ering any question, evidence and target, respec-
tively. Recently, McKenna et al. (2023) iden-
tify the attestation bias, where LLMs falsely label
NLI samples as entailment when the hypothesis
is attested in training data. In Section 3, we ob-
serve that, when provided with premise-only or
hypothesis-only inputs, LLMs often struggle to pre-
dict not_entailment, and frequently make identical
predictions with those using both components. This
indicates the potential existence of context prefer-
ence bias that enables LLMs to perform inference
without relying on both premise and hypothesis.

Calibration of Language Models. Previous
attempts to mitigate spurious correlations include
training a debiased model with residual fitting (He
et al., 2019) or a debiased training set (Wu et al.,
2022). However, these methods necessitate fine-
tuning, and thus pose challenges for pursuing effi-
cient LLMs. Zhao et al. (2021) propose contextual



calibration (CC), which first estimates the bias of
language models with a content-free test input, and
then counteracts the bias by calibrating the output
distribution. Holtzman et al. (2021) find that dif-
ferent surface forms compete for probability mass.
Such competition can be greatly compensated by
a scoring choice using domain conditional point-
wise mutual information (DCPMI) that reweighs
the model predictions. Fei et al. (2023) further iden-
tify the domain-label bias and propose a domain-
context calibration method (DC) that estimates the
label bias using random in-domain words from the
task corpus. Han et al. (2023) propose prototypical
calibration to learn a decision boundary with Gaus-
sian mixture models for zero-shot and few-shot
classification. Zhou et al. (2024) propose batch
calibration (BC) to estimate the contextual bias for
each class from a batch and obtain the calibrated
probability by dividing the output probability over
the contextual prior. In contrast, we tackle the
problem from a different perspective of task refor-
mulation, which mitigates bias while recovering
model performance across challenging inference
tasks.

3 Context Preference Bias

Formally, denote the input to a problem as x =

x1, x2, ..., xn, where xi represents the ith part of
the input context such as a hypothesis in the NLI
problem. The context preference bias problem
refers to a model’s tendency to make a prediction
based primarily on xi, rather than considering the
entire x. In this work, n can be considered as 2,
where x1 and x2 represent the premise and hypoth-
esis for NLI, the text and topic for stance detection,
and different sentences for paraphrasing. Without
loss of generality, we consider NLI as the main tar-
get in the following sections and use xp and xh to
represent x1 and x2, respectively. McKenna et al.
(2023) identify the attestation bias for the NLI
task, which can be seen as a special case of context
preference bias where LLMs falsely associate the
hypothesis with entailment.

We explore the context preference bias from a
novel viewpoint, i.e., we examine whether LLMs
can accurately predict not_entailment when the
premise or hypothesis is absent from the input.
Specifically, we evaluate Mistral-7B-Instruct-v0.3
(Jiang et al., 2023) on binary NLI tasks RTE (Da-
gan et al., 2005), SciTail (Khot et al., 2018) and
QNLI (Rajpurkar et al., 2016) datasets where out-

Figure 2: The percentage of LLM predictions on label
not_entailment (NLI) with premise-only and hypothesis-
only inputs. Higher value indicates low bias.

puts include not_entailment or entailment. Ideally,
LLMs should be able to discern the absence of
premise or hypothesis and make predictions on
not_entailment. As shown in Figure 2, Mistral-
7B-Instruct-v0.3 exhibits a tendency to associate
premise-only or hypothesis-only inputs with labels
other than not_entailment, as evidenced by the gap
between the bars and the ideal value (i.e., 100%).
It suggests the existence of spurious correlations
(which we call context preference bias) that can
distract LLMs from relying on both premise and
hypothesis when making predictions. In addition,
the performance of LLMs on premise-only and
hypothesis-only inputs varies across datasets. For
example, Mistral-7B-Instruct-v0.3 exhibits supe-
rior performance in the premise-only setting for
SciTail and performs better in the hypothesis-only
setting for RTE.

Building upon the observation, we further inves-
tigate the correlation between incorrect LLM pre-
dictions (using both premise and hypothesis) and
the labels derived from premise-only or hypothesis-
only inputs. Results are shown in Figure 3. We
observe that LLM predictions based solely on the
premise or the hypothesis frequently align with in-
correct predictions of using both components. For
example, in the SciTail dataset, over 90% of incor-
rect LLM predictions align with the labels obtained
from hypothesis-only inputs. It reveals that the
LLM excessively relies on the premise or hypothe-
sis alone when making predictions.

4 Task Calibration

4.1 Problem Formulation

Prompting has emerged as an effective strategy
for LLMs to perform zero-shot inference with hu-
man instructions. For an NLI task, denoting a sen-
tence pair (xp, xh) and a possible label y for infer-



Figure 3: The percentage of erroneous LLM predictions
(using both premise and hypothesis) that align with the
labels derived from premise-only or hypothesis-only
inputs. Higher value indicates high correlation.

ence tasks, LLMs make prediction by calculating:
argmaxy∈Y p(y∣xp, xh), where Y denotes the ver-
balizers that define the label set of C classes, and
p ∈ RC is the prediction probability.

4.2 Mutual Information in Calibration
To factor out the probability of specific surface
forms, Holtzman et al. (2021) propose domain con-
ditional PMI (DCPMI) to indicate the extent to
which the input text is related to the answer within
a domain. This concept is articulated in the context
of inference tasks as follows:

arg maxy∈Y log (
p(y ∣ xp, xh)
p(y ∣ xdomain)

) , (1)

where xdomain denotes a short domain-relevant
string, which is fixed for a specific task. An ex-
ample of xdomain is shown in Table 1. Then, the
mutual information of applying DCPMI to the task
can be written as:

MIDC = ∑
xp,xh,y

p(xp, xh, y) log (
p(y ∣ xp, xh)
p(y ∣ xdomain)

) .

(2)

However, DCPMI calibrates model predictions
with content-free tokens (i.e., xdomain), which may
introduce additional biases that lead to biased pre-
dictions (Zhou et al., 2024). Moreover, MIDC fails
to take context preference bias into considerations,
which may account for the failures in Section 6.

4.3 Reformulation of Inference Tasks
Given two random variables A and B, their mutual
information is defined in terms of their probabilistic
density functions p(a), p(b), and p(a, b):

I(A;B) = ∬ p(a, b) log ( p(a, b)
p(a)p(b)) da db.

(3)

I(A;B) is a measure of the mutual dependence
between A and B, reflecting the reduction in un-
certainty of one variable through knowledge of the
other. Inspired by the concept of mutual informa-
tion (Tishby et al., 1999; Peng et al., 2005), we
introduce I(Xp, Xh;Y ) to indicate the joint de-
pendency of inputs (i.e., premise and hypothesis)
on the target class. Ideally, LLMs should depend
on both premise and hypothesis to make predic-
tions on inference tasks. However, as discussed in
Section 3, LLMs with only xp or xh as input can
still predict entailment on NLI datasets, indicating
the existence of spurious correlations between la-
bels and texts that may limit the reasoning ability
of LLMs. To mitigate the models’ excessive re-
liance on xp or xh when making predictions, we
propose task calibration (TC), which defines MITC
as follows:

MITC ∶= I(Xp, Xh;Y ) − 1

2
I(Xp;Y ) − 1

2
I(Xh;Y )

= ∑
xp,xh,y

p(xp, xh, y) [log
p(y ∣ xp, xh)

p(y)

−
1

2
log

p(y ∣ xp)
p(y) −

1

2
log

p(y ∣ xh)
p(y) ]

= ∑
xp,xh,y

p(xp, xh, y)

⋅ log
⎛
⎜
⎝

p(y ∣ xp, xh)√
p(y ∣ xp)p(y ∣ xh)

⎞
⎟
⎠
, (4)

where p(y∣xp) and p(y∣xh) denote the prediction
probabilities of using only premise and hypothesis
as input, respectively. Since Figure 2 reveals the
presence of bias towards both premise-only and
hypothesis-only inputs, we assign an equal weight
of 0.5 to both components. MITC quantifies the
joint dependency of Xp and Xh on Y , beyond their
individual dependencies. In essence, MITC high-
lights the synergistic effect of Xp and Xh in pre-
dicting Y , rather than their separate contributions.
Instead of directly using argmaxy∈Y p(y∣xp, xh)
as the scoring function, TC reformulates the infer-
ence tasks as:

arg maxy∈Yp(y ∣ xp, xh) log(
p(y ∣ xp, xh)2

p(y ∣ xp)p(y ∣ xh)
).

(5)
Note that we remove the square root from Equation
4 for more natural expression. TC is an inference-
only method that requires no fine-tuning and anno-
tated data. It brings only two additional inferences



Table 1: Comparison of scoring functions between task calibration (TC) and each calibration baseline on inference
tasks. The example is selected from the RTE dataset (Dagan et al., 2005).

Text: Baselines:

Premise (xp): Mount Olympus towers up from Probability (LLM)

the center of the earth arg maxy∈Yp(y∣xp, xh)
Hypothesis (xh): Mount Olympus is in the center Contextual Calibration (CC)

of the earth arg maxy∈Ywp(y∣xp, xh) + b

Template: {} entails {}. true or false? Answer: Domain Conditional PMI (DCPMI)

Domain Text (xdomain ): true or false? Answer: arg maxy∈Y
p(y∣xp,xh)
p(y∣xdomain)

Random Text (xrand1 ): {random in-domain text Domain-context Calibration (DC)

for the premise} arg maxy∈Y
p(y∣xp,xh)

p(y∣xrand1 ,xrand2 )

Random Text (xrand2 ): {random in-domain text Batch Calibration (BC)

for the hypothesis} arg maxy∈Y
p(y∣xp,xh)

1
N

∑N
j=1 p(y∣xj

p,x
j
h)

Our Method: Task Calibration (TC)

arg maxy∈Yp(y∣xp, xh) log(
p(y∣xp,xh)2

p(y∣xp)p(y∣xh) )

of p(y ∣xp) and p(y ∣xh) for each sample. We
compare the TC with previous calibration meth-
ods in Table 1. Unlike previous methods, which
calibrate model predictions by either relying on
content-free tokens or estimating contextual priors,
TC mitigates the effects of spurious correlations
by reducing LLMs’ reliance on individual xp or xh
through task formulation.

4.4 Task calibration on inference tasks

As discussed in Section 5, our evaluation focuses
primarily on NLI, stance detection and paraphras-
ing tasks. Concretely, xp and xh represent the
premise and the hypothesis in NLI tasks, respec-
tively. An example is shown in Figure 1, where
Sentence and Question can be seen as the premise
and the hypothesis, respectively. In stance detec-
tion tasks, xp and xh correspond to the text and the
target (or claim), respectively. For example, the
text “College exposes students to diverse people
and ideas.” can be considered as xp and the claim
“College education is worth it.” can be seen as xh.
Similarly, xp and xh represent different sentences
in paraphrasing tasks. For instance, the queries
“What was the deadliest battle in history?” and
“What was the bloodiest battle in history?” can be
seen as the xp and xh, respectively.

5 Experimental setup

Datasets. We conduct experiments on 17 text
classification datasets that cover a wide range of
tasks. Specifically, for standard inference task, we

consider natural language inference: RTE (Dagan
et al., 2005), WNLI (Levesque et al., 2011), Sci-
Tail (Khot et al., 2018), CB (Marneffe et al., 2019),
MNLI (Williams et al., 2018) and QNLI (Rajpurkar
et al., 2016); stance detection: Perspectrum (Chen
et al., 2019), IBM30K (Gretz et al., 2020), EZ-
Stance (Zhao and Caragea, 2024), IAM (Cheng
et al., 2022) and VAST (Allaway and McKeown,
2020); paraphrasing: PAWS (Zhang et al., 2019)
and QQP. To indicate the effectiveness of TC on
other tasks, we follow the experimental setting that
adopts a textual entailment formulation in previous
work (Yin et al., 2019; Ma et al., 2021) and addi-
tionally consider sentiment classification: SST-2
(Socher et al., 2013); offensive language identi-
fication: OffensEval (Barbieri et al., 2020); hate
speech detection: HatEval (Barbieri et al., 2020)
and HateSpeech18 (de Gibert et al., 2018). RTE,
WNLI, CB, MNLI, QNLI and QQP datasets used
for evaluation are drawn from the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks. More details of these datasets can be
found in Table 5 of Appendix. We use the test set
for evaluation except for GLUE and SuperGLUE
datasets, for which we use the full validation set
for evaluation. Note that we exclude datasets such
as OpenBookQA (Mihaylov et al., 2018) and NQ
(Kwiatkowski et al., 2019), since we aim to assess
LLMs’ ability to reason based purely on general
language understanding, not prior knowledge.

Baselines. We compare TC with the original
LM and previous calibration methods, including



Table 2: Results using Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct for zero-shot inference on 13 datasets.
‘Ori.’ indicates the LLM predictions without using any calibration method, which are determined by selecting the
class with the highest probability. The best and second-best results are marked in bold fonts and ranked by color.

Dataset RTE WNLI SciTail CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

Ori. 74.4 70.4 60.5 60.7 66.4 74.8 58.0 58.0 31.1 78.0 44.3 58.4 50.6
Gen. 74.0 66.2 57.8 73.2 59.2 75.2 53.0 50.2 34.0 69.1 44.0 58.7 49.5
CC 76.2 71.8 62.6 66.1 66.9 75.8 58.3 58.4 33.8 77.2 48.3 61.6 46.8
DCPMI 76.5 69.0 63.0 62.5 66.7 76.3 51.3 54.1 32.7 76.7 43.8 51.7 52.0
DC 73.6 70.4 58.4 73.2 64.7 72.4 64.0 60.1 33.8 77.2 47.7 58.4 49.7
BC 74.7 70.4 61.7 64.3 66.7 75.3 61.9 58.9 34.4 78.2 50.1 61.3 50.4
TC 78.0 73.2 64.3 82.1 68.1 77.8 65.4 69.8 36.0 79.5 49.4 63.0 54.9

Phi-3-mini-4k-instruct
Ori. 70.8 71.8 61.9 39.3 58.9 72.7 60.3 52.1 24.7 71.5 32.7 79.9 48.7
Gen. 71.5 73.2 58.7 16.1 47.2 75.2 63.5 53.5 37.9 72.3 38.7 81.4 53.1
CC 69.7 71.8 62.7 10.7 36.6 71.4 51.0 45.4 28.6 71.0 40.3 78.8 45.8
DCPMI 71.1 76.1 55.3 76.8 54.5 75.0 41.3 39.2 37.8 73.4 47.7 80.9 50.0
DC 72.2 66.2 49.2 64.3 66.8 66.2 59.9 55.4 36.7 71.3 39.5 81.8 51.8
BC 71.1 73.2 65.9 64.3 63.7 74.8 64.4 58.9 36.9 72.7 49.9 81.8 49.8
TC 73.6 74.6 64.3 83.9 59.9 78.5 66.9 66.0 39.4 75.7 51.9 83.0 54.7

CC (Zhao et al., 2021), DCPMI (Holtzman et al.,
2021), DC (Fei et al., 2023) and BC (Zhou et al.,
2024). These methods are discussed in Section
2 and their scoring functions are shown in Table
1. We follow the same setup with original papers
in the implementation. For CC, we average the
probabilities from three content-free inputs: ‘N/A’,
‘[MASK]’, and the empty string. For DCPMI, we
adopt the same domain premise (e.g., ‘true or false?
Answer:’) on inference datasets. For DC, we sam-
ple the same number (i.e., 20) of random texts for
estimating model’s prior. For BC, we compute the
correction log-probability once after all test sam-
ples are seen as suggested. In addition, we consider
a different text generation setting where we prompt
the LLMs for natural generation (‘Gen.’) with a
maximum length of 100 tokens and extract the label
prediction from the generated text.

Model and Implementation Details. We con-
duct experiments mainly on two instruction-tuned
models including Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023) and Phi-3-mini-4k-instruct (3.8B) (Ab-
din et al., 2024). For all experiments, unless stated
otherwise, we perform the evaluation in the zero-
shot setting. In the few-shot setting, we use n = 1-4
example(s) sampled randomly from the training set
to construct the context prompt and evaluate five
times using different random seeds. The templates
and label names used for all datasets can be found
in Table 6 of Appendix. We conduct the evaluation

on an NVIDIA RTX A6000 GPU for all models.
Following prior work (Fei et al., 2023; Zhou et al.,
2024), we use the accuracy as the evaluation metric
for most datasets. More details are available in our
GitHub repository.

6 Experiments

6.1 Main Results

Zero-Shot Experiments on Inference Tasks.
We report the zero-shot performance of Mistral-
7B-Instruct-v0.3 and Phi-3-mini-4k-instruct across
a diverse set of inference tasks in Table 2. No-
tably, TC consistently outperforms the original
LLM (without calibration) across all datasets on
all LLMs. In some cases, the absolute improve-
ment can be over 40%, like Phi-3-mini-4k-instruct
on CB in Table 2. It indicates that our proposed
TC unleashes the potential of LLMs by mitigat-
ing spurious correlations that often lead to biased
predictions. In addition, TC shows promising im-
provements over state-of-the-art calibration meth-
ods, surpassing them in 12 and 10 out of 13 datasets
on the Mistral-7B-Instruct-v0.3 and Phi-3-mini-
4k-instruct models, respectively. It is noteworthy
that TC demonstrates stable performance improve-
ments, in contrast to previous baselines which ex-
hibit significant fluctuations in performance across
tasks, often leading to frequent and notable perfor-
mance degradation.

Few-Shot Experiments. While our primary



Figure 4: The few-shot performance of Mistral-7B-Instruct-v0.3 using various calibration methods over the number
of in-context learning (ICL) shots. Lines and shades denote the mean and standard deviation, respectively, for 5
randomly sampled sets used for few-shot inference.

focus in this paper is on zero-shot inference, TC
can be also applied to few-shot scenarios. In Figure
4, we report n-shot (n ranges from 1 to 4) results
of Mistral-7b-Instruct-v0.3 on CB, RTE, PAWS
and VAST datasets. We present the average re-
sults of five randomly sampled sets of n examples
drawn from the training set, along with their stan-
dard deviations. The overall trend reveals that our
proposed TC again outperforms baseline methods
on these datasets with low variance, indicating its
strong generalization ability. We also observe a
general trend of improved performance with an in-
creased number of shots, and the performance gap
between TC and original LLM suggests that TC en-
ables LLMs to more effectively leverage in-context
demonstrations.

6.2 Effectiveness Analysis

We conduct more experiments to verify the effec-
tiveness of TC. The evaluation is performed under
the zero-shot setting for all experiments.

Robustness. We conduct the experiments
across five different prompt templates (details of
templates are shown in Table 7 of Appendix), and
report the means and standard deviations on CB,
RTE, PAWS and VAST datasets. In Figure 5, we
observe that TC shows consistent improvements
over the original LLM, often by a hefty margin,
indicating that TC is more effective and robust to
various prompt templates. In addition, the results
show that the model exhibits better performance
with specific templates, which suggests that a well-
designed prompt template can further improve the
performance of TC. Overall, TC strengthens the
stability of LLM predictions with regard to prompt
designs, thereby simplifying the task of prompt
engineering.

Other NLU Tasks. To assess the generaliza-

Figure 5: The means and standard deviations over
the five different templates considered for CB, RTE,
PAWS and VAST datasets. ‘*’ indicates the significant
improvement in performance over the original LLM
(paired t-test with p ≤ 0.05).

tion ability of TC, besides the inference tasks men-
tioned in Table 2, we consider three additional NLU
tasks (sentiment analysis, offensive language iden-
tification and hate speech detection) for evaluation.
We reformulate the task definition to align with
the format of NLI. For example, with the Hate-
Speech18 dataset, we utilize the original input text
as the premise and take “the text expresses hate
speech.” as the hypothesis. The details of prompt
templates are shown in Table 6 of Appendix. Table
3 shows the performance of Mistral-7B-Instruct-
v0.3 and Phi-3-mini-4k-instruct on these tasks. We
observe that TC improves the original LLM by
an average of 6.8% and 21.4% on Mistral-7B-
Instruct-v0.3 and Phi-3-mini-4k-instruct models,
respectively. Furthermore, TC shows remarkable
improvements over calibration methods on these
datasets. It suggests that TC significantly mitigates
the inherent bias of LLMs, highlighting its potential
as a universally applicable method for addressing
such bias across diverse tasks. We also compare
TC with baselines that directly prompt LLMs for
classification, and results are shown in Table 8 of
Appendix.



Table 3: Zero-shot performance of Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct on additional sentiment
analysis, offensive language identification and hate speech detection tasks. The best and second-best results are
marked in bold fonts and ranked by color.

Model Mistral-7B-Instruct-v0.3 Phi-3-mini-4k-instruct
Method Ori. Gen. CC DCPMI DC BC TC Ori. Gen. CC DCPMI DC BC TC
SST-2 83.9 72.0 81.7 80.7 85.0 84.3 86.8 77.4 82.1 74.0 85.8 89.8 82.7 89.0
OffensEval 58.3 57.3 55.2 53.2 59.4 58.3 61.7 43.6 44.7 42.3 46.4 56.3 56.3 63.5
HatEval 61.2 59.4 60.1 59.6 62.3 62.2 66.5 36.7 36.9 36.6 37.0 54.6 55.9 63.5
HateSpeech18 55.2 50.1 54.6 54.3 57.7 56.2 70.9 33.8 34.3 33.8 34.3 41.9 44.3 61.0

Table 4: Experimental results of zero-shot inference with TC using Mistral-7B-Instruct-v0.3 and Phi-3-mini-4k-
instruct models. ‘+TC’ indicates the combination of TC with the previous calibration method. The best results are
marked in bold fonts. Underlined scores indicate that baseline+TC shows improvements over TC.

Dataset RTE WNLI SciTail CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

TC 78.0 73.2 64.3 82.1 68.1 77.8 65.4 69.8 36.0 79.5 49.4 63.0 54.9
CC 76.2 71.8 62.6 66.1 66.9 75.8 58.3 58.4 33.8 77.2 48.3 61.6 46.8

+TC 78.3 74.6 64.5 82.1 68.0 78.2 65.5 69.9 36.3 79.3 50.0 63.5 55.0
DCPMI 76.5 69.0 63.0 62.5 66.7 76.3 51.3 54.1 32.7 76.7 43.8 51.7 52.0

+TC 78.3 74.6 64.7 80.4 67.8 78.5 64.0 69.4 34.0 79.3 48.5 62.2 54.8
DC 73.6 70.4 58.4 73.2 64.7 72.4 64.0 60.1 33.8 77.2 47.7 58.4 49.7

+TC 78.0 74.6 56.3 83.9 65.4 78.7 66.4 70.2 35.9 79.5 48.3 63.2 55.0
BC 74.7 70.4 61.7 64.3 66.7 75.3 61.9 58.9 34.4 78.2 50.1 61.3 50.4

+TC 77.6 74.6 65.4 69.6 68.8 78.0 66.6 68.0 38.5 78.6 50.3 63.7 55.0
Phi-3-mini-4k-instruct

TC 73.6 74.6 64.3 83.9 59.9 78.5 66.9 66.0 39.4 75.7 51.9 83.0 54.7
CC 69.7 71.8 62.7 10.7 36.6 71.4 51.0 45.4 28.6 71.0 40.3 78.8 45.8

+TC 72.9 74.6 64.7 83.9 58.8 78.6 66.7 66.0 39.2 75.7 52.6 83.0 54.7
DCPMI 71.1 76.1 55.3 76.8 54.5 75.0 41.3 39.2 37.8 73.4 47.7 80.9 50.0

+TC 74.0 73.2 63.0 83.9 59.0 78.0 66.1 66.1 37.5 75.3 44.4 83.0 54.7
DC 72.2 66.2 49.2 64.3 66.8 66.2 59.9 55.4 36.7 71.3 39.5 81.8 51.8

+TC 73.6 69.0 61.3 78.6 67.8 79.9 66.9 67.8 34.9 75.5 37.8 82.9 55.1
BC 71.1 73.2 65.9 64.3 63.7 74.8 64.4 58.9 36.9 72.7 49.9 81.8 49.8

+TC 72.6 76.1 65.4 78.6 69.2 81.8 68.2 68.4 39.0 74.8 52.4 82.5 54.1

6.3 Bias Analysis

Though previous calibration methods have demon-
strated better performance over the original LLM,
we argue that these methods are not always optimal,
which may not effectively mitigate the context pref-
erence bias in inference tasks. To further substanti-
ate our claim, we conduct additional experiments
by applying each previous calibration method to
predictions used in TC. For example, we first cal-
ibrate the p(y ∣ xp), p(y ∣ xh) and p(y ∣ xp, xh)
with BC, and then perform the task calibration.
Experimental results of two LLMs are shown in
Table 4. We find that almost all baseline methods
exhibit improved performance with TC on mod-
els, as evidenced by the bold numbers in the ta-
ble. Compared to CC, DCPMI, and DC relying

on content-free tokens that may introduce addi-
tional biases (Zhou et al., 2024), TC encourages
the model to reason based on both premise and
hypothesis, thereby achieving superior bias mitiga-
tion. BC computes the correction term once after
all test samples are seen, whereas TC computes
the p(y∣xp) and p(y∣xh) for each sample, which
can be seen as a more general instance-specific ap-
proach for calibration. In addition, we can also
observe that baseline+TC outperforms TC on mul-
tiple datasets, which indicates that contributions
from task reformulation do not fully overlap with
previous methods on reducing the bias. We leave
the further exploration of integrating TC with other
calibration methods in future work. We also per-
form a case study to analyze correct and incorrect
predictions in Appendix E.



7 Conclusion

We proposed task calibration (TC), a zero-shot
and inference-only calibration method that refor-
mulates inference tasks to mitigate the effects of
spurious correlations. Experimental results show
that TC achieves state-of-the-art performance on 13
inference datasets under zero-shot setting. Further-
more, our method demonstrates its effectiveness
in few-shot settings and other NLU tasks such as
hate speech detection. TC is also robust to vari-
ous prompt templates and has the potential to be
integrated with other calibration methods.

Limitations

A limitation of our proposed method is that it re-
quires extra computational cost owing to the use
of predictions on parts of the context at inference
time, which could be alleviated with model acceler-
ation techniques such as pruning and quantization.
In addition, our method may not be fully compati-
ble with closed-source LLMs such as GPT-4 and
Claude-3 due to the potential lack of access to pre-
diction logits, which is also prevalent among most
previous calibration methods. We acknowledge
that this is not an exhaustive study on all existing
tasks, where further exploration of extending our
method to more diverse NLP tasks should be done
in future work.
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A Dataset Statistics

In the main experiments, we use 13 datasets falling
into three categories: natural language inference,
stance detection and paraphrasing. We additionally
consider sentiment analysis, offensive language
identification and hate speech detection to indicate
the effectiveness of TC. We use the test set for eval-
uation except for GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) datasets (i.e., RTE,
WNLI, CB, MNLI, QNLI, QQP and SST-2), for
which we use the full validation set for evaluation.
We summarize the dataset statistics in Table 5.

Table 5: Details of the dataset used for evaluation in the
Table 2. #Test denotes the number of test samples. We
consistently use the validation split as the test split for
datasets where test labels are not publicly available.

Dataset Task #Class #Test

RTE NLI 2 277

WNLI NLI 2 71

SciTail NLI 2 2,126

CB NLI 3 56

MNLI-M NLI 3 9,815

MNLI-MM NLI 3 9,832

QNLI NLI 2 5,463

Perspectrum Stance Detection 2 2,773

IBM30K Stance Detection 2 6,315

EZ-Stance Stance Detection 3 7,798

IAM Stance Detection 2 527

VAST Stance Detection 3 1,460

PAWS Paraphrasing 2 8,000

QQP Paraphrasing 2 40,430

SST-2 Sentiment Analysis 2 872

OffensEval Offensive Detection 2 860

HatEval Hate Speech Detection 2 2,970

HateSpeech18 Hate Speech Detection 2 478

B Prompt Templates

We show the templates and label names for all
datasets in Table 6. For NLI tasks, we follow the
previous works (Holtzman et al., 2021; Fei et al.,
2023) and use true/false/neither as the label set. For
stance detection tasks, we use favor/against/neutral
as the label set, which is consistent with previous
works (Zhang et al., 2022; Zhao et al., 2024). The
label neither or neutral is removed from the label
set for the binary classification tasks.

In addition, we show the templates and label
names used in robustness experiments in Table 7.
Besides the original prompt as shown in Table 6,
we introduce four additional templates and label
sets for each dataset to verify the robustness of TC
towards various templates on inference tasks.

C Direct Prompting for Classification
Tasks

Besides the experimental setting of task reformula-
tion as discussed in Section 6.2, we also compare
TC with baselines in the setting of direct prompt-
ing. We follow the prompt templates and label
sets of previous work (Fei et al., 2023; Zhou et al.,
2024). Table 8 shows the performance of Mistral-
7B-Instruct-v0.3 and Phi-3-mini-4k-instruct under
this setting. Results indicate that TC still achieves
the best performance on all datasets, which fur-
ther validate our claim that TC has the potential to
be a universally applicable method for addressing
spurious correlations across diverse tasks.

D An Ensemble of Premise and
Hypothesis Calibration

We also consider ensembling the results of premise
calibration and hypothesis calibration using batch
calibration (BC). Specifically, we individually cali-
brate premise and hypothesis predictions using BC
and then aggregate the outputs. Results are shown
in Table 9. We can observe that TC significantly
outperforms this baseline (which we call BC-en)
on all datasets across two LLMs, which indicates
the importance of the proposed mutual informa-
tion method. The performance of BC-en is worse
than BC because NLI tasks require both premise
and hypothesis information to infer the entailment
label.

E Case Study

To get a better impression of how TC works, we
perform an in-depth analysis on QNLI and present
three examples in Table 10. Correct answers are
highlighted in bold. Results show that TC accu-
rately predicts 61% of the instances that were ini-
tially misclassified by the original LLM using both
the sentence and the question as input on QNLI
(Ex. 1-2). In the second example, despite the in-
correct predictions of ‘Ori.’, ‘S’ and ‘Q’, TC suc-
cessfully identifies the correct label false, which
demonstrates the effectiveness of reducing LLMs’
reliance on individual component (i.e., the sentence



Table 6: Prompt templates for the main experiments on each task. The inputs are marked in {}.

Dataset Template Label
RTE {Premise} entails {Hypothesis}. true/false

true or false? Answer: {Label}
WNLI {Text 1} entails {Text 2}. true/false

true or false? Answer: {Label}
SciTail {Premise} entails {Hypothesis}. true/false

true or false? Answer: {Label}
CB {Premise}. Hypothesis: {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}
MNLI {Premise}. Hypothesis: {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}
QNLI {Text} contains the answer to {Question}. true/false

true or false? Answer: {Label}
Perspectrum What is the stance of {Text} on {Target}? favor/against

favor or against? Answer: {Label}
IBM30K What is the stance of {Text} on {Target}? favor/against

favor or against? Answer: {Label}
EZ-Stance What is the stance of {Text} on {Target}? favor/against/neutral

favor, against or neutral? Answer: {Label}
IAM {Claim} gives a favorable answer to {Topic}? true/false

true or false? Answer: {Label}
VAST What is the stance of {Text} on {Target}? favor/against/neutral

favor, against or neutral? Answer: {Label}
PAWS Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Duplicate: true or false? Answer: {Label}
QQP Question 1: {Text 1}. Question 2: {Text 2}. true/false

Duplicate: true or false? Answer: {Label}
SST-2 {Text} entails {Claim}. true/false

true or false? Answer: {Label}
OffensEval {Text} entails {Claim}. true/false

true or false? Answer: {Label}
HatEval {Text} entails {Claim}. true/false

true or false? Answer: {Label}
HateSpeech18 {Text} entails {Claim}. true/false

true or false? Answer: {Label}

or the question) at inference time. However, we
also observe that TC encounters failure in some rare
cases (Ex. 3), accounting for approximately 5% of
the erroneous predictions by the original LLM. As
shown in the third example, TC fails to correct the
LLM prediction when both ‘S’ and ‘Q’ provide the
accurate predictions. Overall, we see that TC can
effectively calibrate LLM predictions by utilizing
the predictions of the premise (sentence) and the
hypothesis (question).



Table 7: Prompt templates for the robustness experiments on RTE, CB, VAST and PAWS datasets. The inputs are
marked in {}.

Dataset ID Template Label

RTE 1 {Premise} entails {Hypothesis}. true/false

true or false? Answer: {Label}

2 {Premise}. Hypothesis: {Hypothesis}. true/false

true or false? Answer: {Label}

3 {Premise}. Question: {Hypothesis}. true/false

true or false? Answer: {Label}

4 {Premise}. Question: {Hypothesis}. entailment/

entailment or contradiction? Answer: {Label} contradiction

5 Does the premise {Premise} entail the hypothesis {Hypothesis}? yes/no

yes or no? Answer: {Label}

CB 1 {Premise} entails {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}

2 {Premise}. Hypothesis: {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}

3 {Premise}. Question: {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}

4 {Premise}. Question: {Hypothesis}. contradiction/

entailment, contradiction or neutral? Answer: {Label} entailment/neutral

5 Does the premise {Premise} entail the hypothesis {Hypothesis}? yes/no/neither

yes, no or neither? Answer: {Label}

VAST 1 What is the stance of {Text} on {Target}? favor/against/neutral

favor, against or neutral? Answer: {Label}

2 What is the attitude of the sentence {Text} towards {Target}? favor/against/neutral

favor, against or neutral? Answer: {Label}

3 Does {Text} support {Target}? true/false/neither

true, false or neither? Answer: {Label}

4 {Text} supports {Target}. true/false/neither

true, false or neither? Answer: {Label}

5 Sentence: {Text}. Target: {Target}. favor/against/neutral

Stance: favor, against or neutral? Answer: {Label}

PAWS 1 Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Duplicate: true or false? Answer: {Label}

2 Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Is Sentence 2 the duplicate of Sentence 1?

true or false? Answer: {Label}

3 Text 1: {Text 1}. Text 2: {Text 2}. true/false

Duplicate: true or false? Answer: {Label}

4 Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Equivalence: true or false? Answer: {Label}

5 Sentence 1: {Text 1}. Sentence 2: {Text 2}. yes/no

Duplicate: yes or no? Answer: {Label}



Table 8: Zero-shot performance of Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct on additional sentiment
analysis, offensive language identification and hate speech detection tasks in the direct prompting setting. The best
and second-best results are marked in bold fonts and ranked by color.

Model Mistral-7B-Instruct-v0.3 Phi-3-mini-4k-instruct
Method Ori. CC DCPMI DC BC TC Ori. CC DCPMI DC BC TC
SST-2 72.9 75.3 82.8 81.7 83.1 86.8 84.9 84.1 84.1 84.1 84.6 89.0
OffensEval 52.9 36.9 41.0 57.7 53.6 61.7 41.8 42.6 36.1 41.3 42.4 63.5
HatEval 48.3 34.8 38.4 60.2 61.7 66.5 49.2 49.9 46.0 49.9 49.9 63.5
HateSpeech18 63.6 48.9 53.7 67.5 69.3 70.9 59.4 57.9 59.7 60.2 59.9 61.0

Table 9: Comparison of TC with BC-en using Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct for zero-shot
inference on 13 datasets. The best results are marked in bold fonts.

Dataset RTE WNLI SciTail CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

BC 74.7 70.4 61.7 64.3 66.7 75.3 61.9 58.9 34.4 78.2 50.1 61.3 50.4
BC-en 59.2 49.3 46.9 25.0 36.0 49.1 51.8 38.5 27.7 57.9 37.3 47.7 33.4
TC 78.0 73.2 64.3 82.1 68.1 77.8 65.4 69.8 36.0 79.5 49.4 63.0 54.9
Phi-3-mini-4k-instruct

BC 71.1 73.2 65.9 64.3 63.7 74.8 64.4 58.9 36.9 72.7 49.9 81.8 49.8
BC-en 56.7 57.7 56.0 26.8 35.7 49.9 55.4 42.4 30.6 64.9 38.1 51.9 43.6
TC 73.6 74.6 64.3 83.9 59.9 78.5 66.9 66.0 39.4 75.7 51.9 83.0 54.7

Table 10: Examples of applying task calibration to predictions of Phi-3-mini-4k-instruct. ‘Ori.’ indicates the original
LLM prediction using both the sentence and the question as input. ‘S’ and ‘Q’ indicate LLM predictions using
only the sentence and the question, respectively. All samples are taken from QNLI dataset (Rajpurkar et al., 2016).
Correct answers are highlighted in bold.

Sentence Question Ori. S Q TC

1 In Afghanistan, the mujahideen’s victory against the
Soviet Union in the 1980s did not lead to justice
and prosperity, due to a vicious and destructive civil
war between political and tribal warlords, making
Afghanistan one of the poorest countries on earth.

What did the civil
war leave the state of
Afghanistan’s economy
in?

false true false true

2 Unlike a traditional community pharmacy where
prescriptions for any common medication can be
brought in and filled, specialty pharmacies carry
novel medications that need to be properly stored, ad-
ministered, carefully monitored, and clinically man-
aged.

Besides drugs, what else
do specialty pharmacies
provide?

true true true false

3 Although parts of Sunnyside are within the City of
Fresno, much of the neighborhood is a “county island”
within Fresno County.

Where is the neighbor-
hood of Sunnyside lo-
cated in Fresno?

true false false true
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