@inproceedings{liu-etal-2025-select,
title = "Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation",
author = "Liu, Xiaochuan and
Song, Ruihua and
Wang, Xiting and
Chen, Xu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.366/",
doi = "10.18653/v1/2025.findings-acl.366",
pages = "7009--7028",
ISBN = "979-8-89176-256-5",
abstract = "Automatic related work generation (RWG) can save people{'}s time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full{\_}Text{\_}RWG."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-select">
<titleInfo>
<title>Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaochuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihua</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiting</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Automatic related work generation (RWG) can save people’s time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.</abstract>
<identifier type="citekey">liu-etal-2025-select</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.366</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.366/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>7009</start>
<end>7028</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation
%A Liu, Xiaochuan
%A Song, Ruihua
%A Wang, Xiting
%A Chen, Xu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F liu-etal-2025-select
%X Automatic related work generation (RWG) can save people’s time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.
%R 10.18653/v1/2025.findings-acl.366
%U https://aclanthology.org/2025.findings-acl.366/
%U https://doi.org/10.18653/v1/2025.findings-acl.366
%P 7009-7028
Markdown (Informal)
[Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation](https://aclanthology.org/2025.findings-acl.366/) (Liu et al., Findings 2025)
ACL