@inproceedings{li-etal-2025-chain,
title = "Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models",
author = "Li, Xi and
Mao, Ruofan and
Zhang, Yusen and
Lou, Renze and
Wu, Chen and
Wang, Jiaqi",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.401/",
doi = "10.18653/v1/2025.findings-acl.401",
pages = "7705--7727",
ISBN = "979-8-89176-256-5",
abstract = "Large Language Models (LLMs), especially those accessed via APIs, have demonstrated impressive capabilities across various domains. However, users without technical expertise often turn to (untrustworthy) third-party services, such as prompt engineering, to enhance their LLM experience, creating vulnerabilities to adversarial threats like backdoor attacks. Backdoor-compromised LLMs generate malicious outputs to users when inputs contain specific ``triggers'' set by attackers. Traditional defense strategies, originally designed for small-scale models, are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements. To address these limitations, we propose Chain-of-Scrutiny (CoS) which leverages LLMs' unique reasoning abilities to mitigate backdoor attacks. It guides the LLM to generate reasoning steps for a given input and scrutinizes for consistency with the final output {--} any inconsistencies indicating a potential attack. It is well-suited for the popular API-only LLM deployments, enabling detection at minimal cost and with little data. User-friendly and driven by natural language, it allows non-experts to perform the defense independently while maintaining transparency. We validate the effectiveness of CoS through extensive experiments on various tasks and LLMs, with results showing greater benefits for more powerful LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-chain">
<titleInfo>
<title>Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruofan</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renze</namePart>
<namePart type="family">Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaqi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs), especially those accessed via APIs, have demonstrated impressive capabilities across various domains. However, users without technical expertise often turn to (untrustworthy) third-party services, such as prompt engineering, to enhance their LLM experience, creating vulnerabilities to adversarial threats like backdoor attacks. Backdoor-compromised LLMs generate malicious outputs to users when inputs contain specific “triggers” set by attackers. Traditional defense strategies, originally designed for small-scale models, are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements. To address these limitations, we propose Chain-of-Scrutiny (CoS) which leverages LLMs’ unique reasoning abilities to mitigate backdoor attacks. It guides the LLM to generate reasoning steps for a given input and scrutinizes for consistency with the final output – any inconsistencies indicating a potential attack. It is well-suited for the popular API-only LLM deployments, enabling detection at minimal cost and with little data. User-friendly and driven by natural language, it allows non-experts to perform the defense independently while maintaining transparency. We validate the effectiveness of CoS through extensive experiments on various tasks and LLMs, with results showing greater benefits for more powerful LLMs.</abstract>
<identifier type="citekey">li-etal-2025-chain</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.401</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.401/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>7705</start>
<end>7727</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models
%A Li, Xi
%A Mao, Ruofan
%A Zhang, Yusen
%A Lou, Renze
%A Wu, Chen
%A Wang, Jiaqi
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F li-etal-2025-chain
%X Large Language Models (LLMs), especially those accessed via APIs, have demonstrated impressive capabilities across various domains. However, users without technical expertise often turn to (untrustworthy) third-party services, such as prompt engineering, to enhance their LLM experience, creating vulnerabilities to adversarial threats like backdoor attacks. Backdoor-compromised LLMs generate malicious outputs to users when inputs contain specific “triggers” set by attackers. Traditional defense strategies, originally designed for small-scale models, are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements. To address these limitations, we propose Chain-of-Scrutiny (CoS) which leverages LLMs’ unique reasoning abilities to mitigate backdoor attacks. It guides the LLM to generate reasoning steps for a given input and scrutinizes for consistency with the final output – any inconsistencies indicating a potential attack. It is well-suited for the popular API-only LLM deployments, enabling detection at minimal cost and with little data. User-friendly and driven by natural language, it allows non-experts to perform the defense independently while maintaining transparency. We validate the effectiveness of CoS through extensive experiments on various tasks and LLMs, with results showing greater benefits for more powerful LLMs.
%R 10.18653/v1/2025.findings-acl.401
%U https://aclanthology.org/2025.findings-acl.401/
%U https://doi.org/10.18653/v1/2025.findings-acl.401
%P 7705-7727
Markdown (Informal)
[Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models](https://aclanthology.org/2025.findings-acl.401/) (Li et al., Findings 2025)
ACL