@inproceedings{lee-song-2025-retrieval,
title = "Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models",
author = "Lee, Jihoon and
Song, Min",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.430/",
doi = "10.18653/v1/2025.findings-acl.430",
pages = "8200--8219",
ISBN = "979-8-89176-256-5",
abstract = "Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-song-2025-retrieval">
<titleInfo>
<title>Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jihoon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.</abstract>
<identifier type="citekey">lee-song-2025-retrieval</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.430</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.430/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8200</start>
<end>8219</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models
%A Lee, Jihoon
%A Song, Min
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F lee-song-2025-retrieval
%X Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.
%R 10.18653/v1/2025.findings-acl.430
%U https://aclanthology.org/2025.findings-acl.430/
%U https://doi.org/10.18653/v1/2025.findings-acl.430
%P 8200-8219
Markdown (Informal)
[Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models](https://aclanthology.org/2025.findings-acl.430/) (Lee & Song, Findings 2025)
ACL