@inproceedings{qiu-etal-2025-think,
title = "Think Both Ways: Teacher-Student Bidirectional Reasoning Enhances {MCQ} Generation and Distractor Quality",
author = "Qiu, Yimiao and
Deng, Yang and
Yao, Quanming and
Zhang, Zhimeng and
Dong, Zhiang and
Yao, Chang and
Chen, Jingyuan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.432/",
doi = "10.18653/v1/2025.findings-acl.432",
pages = "8240--8253",
ISBN = "979-8-89176-256-5",
abstract = "Generating high-quality Multiple Choice Questions (MCQs) remains challenging for educational tools due to the need for contextual relevance and plausible distractors. Existing methods still struggle with these dual requirements, leading to questions that lack depth and distractors that are either too obvious or irrelevant. In this paper, we propose BiFlow, a novel framework that integrates bidirectional reasoning perspectives: teacher reasoning generates contextually relevant questions and plausible distractors, while student reasoning evaluates question clarity and the misleading nature of the distractors. To further enhance reasoning, we introduce PathFinder, a mechanism that employs breadth-first search and Chain-of-Thought (CoT) strategies to explore diverse reasoning paths, improving both the quality and diversity of generated questions and distractors. Additionally, we enrich the FairytaleQA dataset to FairytaleMCQ with high-quality distractors, providing a robust benchmark for MCQ generation. Experimental results demonstrate that BiFlow outperforms existing methods, particularly in generating text-grounded questions and high-quality distractors for narrative contexts, highlighting its value in educational applications."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qiu-etal-2025-think">
<titleInfo>
<title>Think Both Ways: Teacher-Student Bidirectional Reasoning Enhances MCQ Generation and Distractor Quality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yimiao</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quanming</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhimeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiang</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chang</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingyuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Generating high-quality Multiple Choice Questions (MCQs) remains challenging for educational tools due to the need for contextual relevance and plausible distractors. Existing methods still struggle with these dual requirements, leading to questions that lack depth and distractors that are either too obvious or irrelevant. In this paper, we propose BiFlow, a novel framework that integrates bidirectional reasoning perspectives: teacher reasoning generates contextually relevant questions and plausible distractors, while student reasoning evaluates question clarity and the misleading nature of the distractors. To further enhance reasoning, we introduce PathFinder, a mechanism that employs breadth-first search and Chain-of-Thought (CoT) strategies to explore diverse reasoning paths, improving both the quality and diversity of generated questions and distractors. Additionally, we enrich the FairytaleQA dataset to FairytaleMCQ with high-quality distractors, providing a robust benchmark for MCQ generation. Experimental results demonstrate that BiFlow outperforms existing methods, particularly in generating text-grounded questions and high-quality distractors for narrative contexts, highlighting its value in educational applications.</abstract>
<identifier type="citekey">qiu-etal-2025-think</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.432</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.432/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8240</start>
<end>8253</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Think Both Ways: Teacher-Student Bidirectional Reasoning Enhances MCQ Generation and Distractor Quality
%A Qiu, Yimiao
%A Deng, Yang
%A Yao, Quanming
%A Zhang, Zhimeng
%A Dong, Zhiang
%A Yao, Chang
%A Chen, Jingyuan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F qiu-etal-2025-think
%X Generating high-quality Multiple Choice Questions (MCQs) remains challenging for educational tools due to the need for contextual relevance and plausible distractors. Existing methods still struggle with these dual requirements, leading to questions that lack depth and distractors that are either too obvious or irrelevant. In this paper, we propose BiFlow, a novel framework that integrates bidirectional reasoning perspectives: teacher reasoning generates contextually relevant questions and plausible distractors, while student reasoning evaluates question clarity and the misleading nature of the distractors. To further enhance reasoning, we introduce PathFinder, a mechanism that employs breadth-first search and Chain-of-Thought (CoT) strategies to explore diverse reasoning paths, improving both the quality and diversity of generated questions and distractors. Additionally, we enrich the FairytaleQA dataset to FairytaleMCQ with high-quality distractors, providing a robust benchmark for MCQ generation. Experimental results demonstrate that BiFlow outperforms existing methods, particularly in generating text-grounded questions and high-quality distractors for narrative contexts, highlighting its value in educational applications.
%R 10.18653/v1/2025.findings-acl.432
%U https://aclanthology.org/2025.findings-acl.432/
%U https://doi.org/10.18653/v1/2025.findings-acl.432
%P 8240-8253
Markdown (Informal)
[Think Both Ways: Teacher-Student Bidirectional Reasoning Enhances MCQ Generation and Distractor Quality](https://aclanthology.org/2025.findings-acl.432/) (Qiu et al., Findings 2025)
ACL