@inproceedings{zhu-etal-2025-retrieval,
title = "Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning",
author = "Zhu, Jiachen and
Zheng, Congmin and
Lin, Jianghao and
Du, Kounianhua and
Wen, Ying and
Yu, Yong and
Wang, Jun and
Zhang, Weinan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.444/",
doi = "10.18653/v1/2025.findings-acl.444",
pages = "8453--8468",
ISBN = "979-8-89176-256-5",
abstract = "While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies the OOD issues including step OOD, arising from differences in reasoning patterns across model types and sizes, and question OOD, due to dataset shifts between training and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps for PRM as a warmup to stimulate its potential to judge target steps, improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetreivalPRM model, establishing a new standard for PRM performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2025-retrieval">
<titleInfo>
<title>Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiachen</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Congmin</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianghao</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kounianhua</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weinan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies the OOD issues including step OOD, arising from differences in reasoning patterns across model types and sizes, and question OOD, due to dataset shifts between training and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps for PRM as a warmup to stimulate its potential to judge target steps, improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetreivalPRM model, establishing a new standard for PRM performance.</abstract>
<identifier type="citekey">zhu-etal-2025-retrieval</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.444</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.444/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8453</start>
<end>8468</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
%A Zhu, Jiachen
%A Zheng, Congmin
%A Lin, Jianghao
%A Du, Kounianhua
%A Wen, Ying
%A Yu, Yong
%A Wang, Jun
%A Zhang, Weinan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F zhu-etal-2025-retrieval
%X While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies the OOD issues including step OOD, arising from differences in reasoning patterns across model types and sizes, and question OOD, due to dataset shifts between training and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps for PRM as a warmup to stimulate its potential to judge target steps, improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetreivalPRM model, establishing a new standard for PRM performance.
%R 10.18653/v1/2025.findings-acl.444
%U https://aclanthology.org/2025.findings-acl.444/
%U https://doi.org/10.18653/v1/2025.findings-acl.444
%P 8453-8468
Markdown (Informal)
[Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning](https://aclanthology.org/2025.findings-acl.444/) (Zhu et al., Findings 2025)
ACL
- Jiachen Zhu, Congmin Zheng, Jianghao Lin, Kounianhua Du, Ying Wen, Yong Yu, Jun Wang, and Weinan Zhang. 2025. Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning. In Findings of the Association for Computational Linguistics: ACL 2025, pages 8453–8468, Vienna, Austria. Association for Computational Linguistics.