@inproceedings{blaschke-etal-2025-analyzing,
title = "Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter",
author = "Blaschke, Verena and
Fedzechkina, Masha and
Ter Hoeve, Maartje",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.454/",
doi = "10.18653/v1/2025.findings-acl.454",
pages = "8653--8684",
ISBN = "979-8-89176-256-5",
abstract = "Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="blaschke-etal-2025-analyzing">
<titleInfo>
<title>Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Verena</namePart>
<namePart type="family">Blaschke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masha</namePart>
<namePart type="family">Fedzechkina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maartje</namePart>
<namePart type="family">Ter Hoeve</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity.</abstract>
<identifier type="citekey">blaschke-etal-2025-analyzing</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.454</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.454/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8653</start>
<end>8684</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter
%A Blaschke, Verena
%A Fedzechkina, Masha
%A Ter Hoeve, Maartje
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F blaschke-etal-2025-analyzing
%X Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity.
%R 10.18653/v1/2025.findings-acl.454
%U https://aclanthology.org/2025.findings-acl.454/
%U https://doi.org/10.18653/v1/2025.findings-acl.454
%P 8653-8684
Markdown (Informal)
[Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter](https://aclanthology.org/2025.findings-acl.454/) (Blaschke et al., Findings 2025)
ACL