@inproceedings{sun-etal-2025-mitigating-negative,
title = "Mitigating Negative Interference in Multilingual Knowledge Editing through Null-Space Constraints",
author = "Sun, Wei and
Qu, Tingyu and
Li, Mingxiao and
Davis, Jesse and
Moens, Marie-Francine",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.460/",
doi = "10.18653/v1/2025.findings-acl.460",
pages = "8796--8810",
ISBN = "979-8-89176-256-5",
abstract = "Efficiently updating multilingual knowledge in large language models (LLMs) without disrupting coherent factual representations across languages remains a significant challenge. While deploying separate editing systems for each language might seem viable, this approach incurs substantial costs due to the need to manage multiple models. A more efficient solution involves integrating knowledge updates across all languages into a unified model. However, sequential edits across languages often lead to destructive parameter interference, significantly degrading multilingual generalization and the accuracy of injected knowledge. To address this issue, we propose LangEdit, a novel null-space constrained framework designed to precisely isolate language-specific knowledge updates. The core innovation of LangEdit lies in its ability to project parameter updates for each language onto the orthogonal complement of other languages' subspaces. This approach mathematically guarantees update independence while preserving multilingual generalization capabilities. We conduct a comprehensive evaluation across three model architectures, six languages, and four downstream tasks, demonstrating that LangEdit effectively mitigates parameter interference and outperforms existing state-of-the-art editing methods. Our results highlight its potential for enabling efficient and accurate multilingual knowledge updates in LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2025-mitigating-negative">
<titleInfo>
<title>Mitigating Negative Interference in Multilingual Knowledge Editing through Null-Space Constraints</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingyu</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingxiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Efficiently updating multilingual knowledge in large language models (LLMs) without disrupting coherent factual representations across languages remains a significant challenge. While deploying separate editing systems for each language might seem viable, this approach incurs substantial costs due to the need to manage multiple models. A more efficient solution involves integrating knowledge updates across all languages into a unified model. However, sequential edits across languages often lead to destructive parameter interference, significantly degrading multilingual generalization and the accuracy of injected knowledge. To address this issue, we propose LangEdit, a novel null-space constrained framework designed to precisely isolate language-specific knowledge updates. The core innovation of LangEdit lies in its ability to project parameter updates for each language onto the orthogonal complement of other languages’ subspaces. This approach mathematically guarantees update independence while preserving multilingual generalization capabilities. We conduct a comprehensive evaluation across three model architectures, six languages, and four downstream tasks, demonstrating that LangEdit effectively mitigates parameter interference and outperforms existing state-of-the-art editing methods. Our results highlight its potential for enabling efficient and accurate multilingual knowledge updates in LLMs.</abstract>
<identifier type="citekey">sun-etal-2025-mitigating-negative</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.460</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.460/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8796</start>
<end>8810</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mitigating Negative Interference in Multilingual Knowledge Editing through Null-Space Constraints
%A Sun, Wei
%A Qu, Tingyu
%A Li, Mingxiao
%A Davis, Jesse
%A Moens, Marie-Francine
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F sun-etal-2025-mitigating-negative
%X Efficiently updating multilingual knowledge in large language models (LLMs) without disrupting coherent factual representations across languages remains a significant challenge. While deploying separate editing systems for each language might seem viable, this approach incurs substantial costs due to the need to manage multiple models. A more efficient solution involves integrating knowledge updates across all languages into a unified model. However, sequential edits across languages often lead to destructive parameter interference, significantly degrading multilingual generalization and the accuracy of injected knowledge. To address this issue, we propose LangEdit, a novel null-space constrained framework designed to precisely isolate language-specific knowledge updates. The core innovation of LangEdit lies in its ability to project parameter updates for each language onto the orthogonal complement of other languages’ subspaces. This approach mathematically guarantees update independence while preserving multilingual generalization capabilities. We conduct a comprehensive evaluation across three model architectures, six languages, and four downstream tasks, demonstrating that LangEdit effectively mitigates parameter interference and outperforms existing state-of-the-art editing methods. Our results highlight its potential for enabling efficient and accurate multilingual knowledge updates in LLMs.
%R 10.18653/v1/2025.findings-acl.460
%U https://aclanthology.org/2025.findings-acl.460/
%U https://doi.org/10.18653/v1/2025.findings-acl.460
%P 8796-8810
Markdown (Informal)
[Mitigating Negative Interference in Multilingual Knowledge Editing through Null-Space Constraints](https://aclanthology.org/2025.findings-acl.460/) (Sun et al., Findings 2025)
ACL