@inproceedings{song-etal-2025-rekg,
title = "{R}e{KG}-{MCTS}: Reinforcing {LLM} Reasoning on Knowledge Graphs via Training-Free {M}onte {C}arlo Tree Search",
author = "Song, Xiaozhuang and
Zhang, Shufei and
Yu, Tianshu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.484/",
doi = "10.18653/v1/2025.findings-acl.484",
pages = "9288--9306",
ISBN = "979-8-89176-256-5",
abstract = "Recent advancements in combining knowledge graphs (KGs) with large language models (LLMs) have demonstrated promising potential in complex KG reasoning tasks, yet existing approaches face limitations in path exploration strategies or excessive computational overhead. We propose ReKG-MCTS, a novel training-free framework that synergizes Monte Carlo Tree Search (MCTS) with LLM capabilities to enable dynamic reasoning over KGs. The framework conceptualizes KG reasoning as a decision-making process, where MCTS strategically explores paths over KG while LLMs provide semantic guidance for reasoning paths. The framework consists of four phases: (1) UCB-based node selection that balances exploration-exploitation on KG, (2) path expansion with KG structural constraints, (3) LLM-guided MC rollouts for simulation, and (4) value backpropagation. Experimental results on WebQSP and CWQ demonstrate that ReKG-MCTS outperforms existing training-free methods and achieves competitive performance compared to fine-tuned baselines. These findings suggest a new paradigm for leveraging language models in KG reasoning tasks. The code is available at https://github.com/ShawnKS/rekgmcts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2025-rekg">
<titleInfo>
<title>ReKG-MCTS: Reinforcing LLM Reasoning on Knowledge Graphs via Training-Free Monte Carlo Tree Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaozhuang</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shufei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianshu</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Recent advancements in combining knowledge graphs (KGs) with large language models (LLMs) have demonstrated promising potential in complex KG reasoning tasks, yet existing approaches face limitations in path exploration strategies or excessive computational overhead. We propose ReKG-MCTS, a novel training-free framework that synergizes Monte Carlo Tree Search (MCTS) with LLM capabilities to enable dynamic reasoning over KGs. The framework conceptualizes KG reasoning as a decision-making process, where MCTS strategically explores paths over KG while LLMs provide semantic guidance for reasoning paths. The framework consists of four phases: (1) UCB-based node selection that balances exploration-exploitation on KG, (2) path expansion with KG structural constraints, (3) LLM-guided MC rollouts for simulation, and (4) value backpropagation. Experimental results on WebQSP and CWQ demonstrate that ReKG-MCTS outperforms existing training-free methods and achieves competitive performance compared to fine-tuned baselines. These findings suggest a new paradigm for leveraging language models in KG reasoning tasks. The code is available at https://github.com/ShawnKS/rekgmcts.</abstract>
<identifier type="citekey">song-etal-2025-rekg</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.484</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.484/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>9288</start>
<end>9306</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ReKG-MCTS: Reinforcing LLM Reasoning on Knowledge Graphs via Training-Free Monte Carlo Tree Search
%A Song, Xiaozhuang
%A Zhang, Shufei
%A Yu, Tianshu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F song-etal-2025-rekg
%X Recent advancements in combining knowledge graphs (KGs) with large language models (LLMs) have demonstrated promising potential in complex KG reasoning tasks, yet existing approaches face limitations in path exploration strategies or excessive computational overhead. We propose ReKG-MCTS, a novel training-free framework that synergizes Monte Carlo Tree Search (MCTS) with LLM capabilities to enable dynamic reasoning over KGs. The framework conceptualizes KG reasoning as a decision-making process, where MCTS strategically explores paths over KG while LLMs provide semantic guidance for reasoning paths. The framework consists of four phases: (1) UCB-based node selection that balances exploration-exploitation on KG, (2) path expansion with KG structural constraints, (3) LLM-guided MC rollouts for simulation, and (4) value backpropagation. Experimental results on WebQSP and CWQ demonstrate that ReKG-MCTS outperforms existing training-free methods and achieves competitive performance compared to fine-tuned baselines. These findings suggest a new paradigm for leveraging language models in KG reasoning tasks. The code is available at https://github.com/ShawnKS/rekgmcts.
%R 10.18653/v1/2025.findings-acl.484
%U https://aclanthology.org/2025.findings-acl.484/
%U https://doi.org/10.18653/v1/2025.findings-acl.484
%P 9288-9306
Markdown (Informal)
[ReKG-MCTS: Reinforcing LLM Reasoning on Knowledge Graphs via Training-Free Monte Carlo Tree Search](https://aclanthology.org/2025.findings-acl.484/) (Song et al., Findings 2025)
ACL