@inproceedings{xu-etal-2025-finripple,
title = "{F}in{R}ipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness",
author = "Xu, Yuanjian and
Hao, Jianing and
Tang, Kunsheng and
Chen, Jingnan and
Liu, Anxian and
Liu, Peng and
Zhang, Guang",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.489/",
doi = "10.18653/v1/2025.findings-acl.489",
pages = "9377--9398",
ISBN = "979-8-89176-256-5",
abstract = "Financial markets exhibit complex dynamics where localized events trigger ripple effects across entities. Previous event studies, constrained by static single-companies analyses and simplistic assumptions, fail to capture these ripple effects. While large language models (LLMs) offer emergent reasoning capabilities, their direct application falters due to structural market unawareness and limited capacity to analyze ripple effects. We propose FinRipple, an elegant framework that empowers LLMs with the ability to analyze ripple effects through financial theory-guided large-scale reinforcement learning. We begin by relaxing the assumptions of previous methods, incorporating a time-varying knowledge graph to accurately represent market structure. By seamlessly integrating classical asset pricing theory, we align the LLM with the market, enabling it to predict ripple effects. To the best of our knowledge, we are the first to provide a standardized definition of ripple effect prediction, a task that is extremely important yet unexplored in the financial domain. Extensive experiments demonstrate that FinRipple provides a promising solution to this task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2025-finripple">
<titleInfo>
<title>FinRipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanjian</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianing</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kunsheng</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingnan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anxian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Financial markets exhibit complex dynamics where localized events trigger ripple effects across entities. Previous event studies, constrained by static single-companies analyses and simplistic assumptions, fail to capture these ripple effects. While large language models (LLMs) offer emergent reasoning capabilities, their direct application falters due to structural market unawareness and limited capacity to analyze ripple effects. We propose FinRipple, an elegant framework that empowers LLMs with the ability to analyze ripple effects through financial theory-guided large-scale reinforcement learning. We begin by relaxing the assumptions of previous methods, incorporating a time-varying knowledge graph to accurately represent market structure. By seamlessly integrating classical asset pricing theory, we align the LLM with the market, enabling it to predict ripple effects. To the best of our knowledge, we are the first to provide a standardized definition of ripple effect prediction, a task that is extremely important yet unexplored in the financial domain. Extensive experiments demonstrate that FinRipple provides a promising solution to this task.</abstract>
<identifier type="citekey">xu-etal-2025-finripple</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.489</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.489/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>9377</start>
<end>9398</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FinRipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness
%A Xu, Yuanjian
%A Hao, Jianing
%A Tang, Kunsheng
%A Chen, Jingnan
%A Liu, Anxian
%A Liu, Peng
%A Zhang, Guang
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F xu-etal-2025-finripple
%X Financial markets exhibit complex dynamics where localized events trigger ripple effects across entities. Previous event studies, constrained by static single-companies analyses and simplistic assumptions, fail to capture these ripple effects. While large language models (LLMs) offer emergent reasoning capabilities, their direct application falters due to structural market unawareness and limited capacity to analyze ripple effects. We propose FinRipple, an elegant framework that empowers LLMs with the ability to analyze ripple effects through financial theory-guided large-scale reinforcement learning. We begin by relaxing the assumptions of previous methods, incorporating a time-varying knowledge graph to accurately represent market structure. By seamlessly integrating classical asset pricing theory, we align the LLM with the market, enabling it to predict ripple effects. To the best of our knowledge, we are the first to provide a standardized definition of ripple effect prediction, a task that is extremely important yet unexplored in the financial domain. Extensive experiments demonstrate that FinRipple provides a promising solution to this task.
%R 10.18653/v1/2025.findings-acl.489
%U https://aclanthology.org/2025.findings-acl.489/
%U https://doi.org/10.18653/v1/2025.findings-acl.489
%P 9377-9398
Markdown (Informal)
[FinRipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness](https://aclanthology.org/2025.findings-acl.489/) (Xu et al., Findings 2025)
ACL