@inproceedings{han-etal-2025-fine,
title = "Fine-grained Knowledge Enhancement for Retrieval-Augmented Generation",
author = "Han, Jingxuan and
Mao, Zhendong and
Liu, Yi and
Che, Yexuan and
Fu, Zheren and
Wang, Quan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.522/",
doi = "10.18653/v1/2025.findings-acl.522",
pages = "10031--10044",
ISBN = "979-8-89176-256-5",
abstract = "Retrieval-augmented generation (RAG) effectively mitigates hallucinations in large language models (LLMs) by filling knowledge gaps with retrieved external information. Most existing studies primarily retrieve knowledge documents based on semantic similarity to assist in answering questions but ignore the fine-grained necessary information within documents. In this paper, we propose a novel fine-grained knowledge enhancement method (FKE) for RAG, where fine-grained knowledge primarily includes sentence-level information easily overlooked in the document-based retrieval process. Concretely, we create a disentangled Chain-of-Thought prompting procedure to retrieve fine-grained knowledge from the external knowledge corpus. Then we develop a decoding enhancement strategy to constrain the document-based decoding process using fine-grained knowledge, thereby facilitating more accurate generated answers. Given an existing RAG pipeline, our method could be applied in a plug-and-play manner to enhance its performance with no additional modules or training process. Extensive experiments verify the effectiveness and generality of our method."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2025-fine">
<titleInfo>
<title>Fine-grained Knowledge Enhancement for Retrieval-Augmented Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jingxuan</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhendong</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yexuan</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheren</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Retrieval-augmented generation (RAG) effectively mitigates hallucinations in large language models (LLMs) by filling knowledge gaps with retrieved external information. Most existing studies primarily retrieve knowledge documents based on semantic similarity to assist in answering questions but ignore the fine-grained necessary information within documents. In this paper, we propose a novel fine-grained knowledge enhancement method (FKE) for RAG, where fine-grained knowledge primarily includes sentence-level information easily overlooked in the document-based retrieval process. Concretely, we create a disentangled Chain-of-Thought prompting procedure to retrieve fine-grained knowledge from the external knowledge corpus. Then we develop a decoding enhancement strategy to constrain the document-based decoding process using fine-grained knowledge, thereby facilitating more accurate generated answers. Given an existing RAG pipeline, our method could be applied in a plug-and-play manner to enhance its performance with no additional modules or training process. Extensive experiments verify the effectiveness and generality of our method.</abstract>
<identifier type="citekey">han-etal-2025-fine</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.522</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.522/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>10031</start>
<end>10044</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-grained Knowledge Enhancement for Retrieval-Augmented Generation
%A Han, Jingxuan
%A Mao, Zhendong
%A Liu, Yi
%A Che, Yexuan
%A Fu, Zheren
%A Wang, Quan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F han-etal-2025-fine
%X Retrieval-augmented generation (RAG) effectively mitigates hallucinations in large language models (LLMs) by filling knowledge gaps with retrieved external information. Most existing studies primarily retrieve knowledge documents based on semantic similarity to assist in answering questions but ignore the fine-grained necessary information within documents. In this paper, we propose a novel fine-grained knowledge enhancement method (FKE) for RAG, where fine-grained knowledge primarily includes sentence-level information easily overlooked in the document-based retrieval process. Concretely, we create a disentangled Chain-of-Thought prompting procedure to retrieve fine-grained knowledge from the external knowledge corpus. Then we develop a decoding enhancement strategy to constrain the document-based decoding process using fine-grained knowledge, thereby facilitating more accurate generated answers. Given an existing RAG pipeline, our method could be applied in a plug-and-play manner to enhance its performance with no additional modules or training process. Extensive experiments verify the effectiveness and generality of our method.
%R 10.18653/v1/2025.findings-acl.522
%U https://aclanthology.org/2025.findings-acl.522/
%U https://doi.org/10.18653/v1/2025.findings-acl.522
%P 10031-10044
Markdown (Informal)
[Fine-grained Knowledge Enhancement for Retrieval-Augmented Generation](https://aclanthology.org/2025.findings-acl.522/) (Han et al., Findings 2025)
ACL