@inproceedings{akash-etal-2025-large,
title = "Can Large Language Models Address Open-Target Stance Detection?",
author = "Akash, Abu Ubaida and
Fahmy, Ahmed and
Trabelsi, Amine",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.54/",
doi = "10.18653/v1/2025.findings-acl.54",
pages = "971--985",
ISBN = "979-8-89176-256-5",
abstract = "Stance detection (SD) identifies a text{'}s position towards a target, typically labeled as favor, against, or none. We introduce Open-Target Stance Detection (OTSD), the most realistic task where targets are neither seen during training nor provided as input. We evaluate Large Language Models (LLMs) from GPT, Gemini, Llama, and Mistral families, comparing their performance to the only existing work, Target-Stance Extraction (TSE), which benefits from predefined targets. Unlike TSE, OTSD removes the dependency of a predefined list, making target generation and evaluation more challenging. We also provide a metric for evaluating target quality that correlates well with human judgment. Our experiments reveal that LLMs outperform TSE in target generation, both when the real target is explicitly and not explicitly mentioned in the text. Similarly, LLMs overall surpass TSE in stance detection for both explicit and non-explicit cases. However, LLMs struggle in both target generation and stance detection when the target is not explicit."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akash-etal-2025-large">
<titleInfo>
<title>Can Large Language Models Address Open-Target Stance Detection?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abu</namePart>
<namePart type="given">Ubaida</namePart>
<namePart type="family">Akash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Fahmy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amine</namePart>
<namePart type="family">Trabelsi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Stance detection (SD) identifies a text’s position towards a target, typically labeled as favor, against, or none. We introduce Open-Target Stance Detection (OTSD), the most realistic task where targets are neither seen during training nor provided as input. We evaluate Large Language Models (LLMs) from GPT, Gemini, Llama, and Mistral families, comparing their performance to the only existing work, Target-Stance Extraction (TSE), which benefits from predefined targets. Unlike TSE, OTSD removes the dependency of a predefined list, making target generation and evaluation more challenging. We also provide a metric for evaluating target quality that correlates well with human judgment. Our experiments reveal that LLMs outperform TSE in target generation, both when the real target is explicitly and not explicitly mentioned in the text. Similarly, LLMs overall surpass TSE in stance detection for both explicit and non-explicit cases. However, LLMs struggle in both target generation and stance detection when the target is not explicit.</abstract>
<identifier type="citekey">akash-etal-2025-large</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.54</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.54/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>971</start>
<end>985</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Large Language Models Address Open-Target Stance Detection?
%A Akash, Abu Ubaida
%A Fahmy, Ahmed
%A Trabelsi, Amine
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F akash-etal-2025-large
%X Stance detection (SD) identifies a text’s position towards a target, typically labeled as favor, against, or none. We introduce Open-Target Stance Detection (OTSD), the most realistic task where targets are neither seen during training nor provided as input. We evaluate Large Language Models (LLMs) from GPT, Gemini, Llama, and Mistral families, comparing their performance to the only existing work, Target-Stance Extraction (TSE), which benefits from predefined targets. Unlike TSE, OTSD removes the dependency of a predefined list, making target generation and evaluation more challenging. We also provide a metric for evaluating target quality that correlates well with human judgment. Our experiments reveal that LLMs outperform TSE in target generation, both when the real target is explicitly and not explicitly mentioned in the text. Similarly, LLMs overall surpass TSE in stance detection for both explicit and non-explicit cases. However, LLMs struggle in both target generation and stance detection when the target is not explicit.
%R 10.18653/v1/2025.findings-acl.54
%U https://aclanthology.org/2025.findings-acl.54/
%U https://doi.org/10.18653/v1/2025.findings-acl.54
%P 971-985
Markdown (Informal)
[Can Large Language Models Address Open-Target Stance Detection?](https://aclanthology.org/2025.findings-acl.54/) (Akash et al., Findings 2025)
ACL