@inproceedings{kirstein-etal-2025-need,
title = "You need to {MIMIC} to get {FAME}: Solving Meeting Transcript Scarcity with Multi-Agent Conversations",
author = "Kirstein, Frederic and
Khan, Muneeb and
Wahle, Jan Philip and
Ruas, Terry and
Gipp, Bela",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.599/",
doi = "10.18653/v1/2025.findings-acl.599",
pages = "11482--11525",
ISBN = "979-8-89176-256-5",
abstract = "Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 points in difficulty). These findings show FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kirstein-etal-2025-need">
<titleInfo>
<title>You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with Multi-Agent Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Kirstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muneeb</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Philip</namePart>
<namePart type="family">Wahle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Terry</namePart>
<namePart type="family">Ruas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bela</namePart>
<namePart type="family">Gipp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 points in difficulty). These findings show FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints.</abstract>
<identifier type="citekey">kirstein-etal-2025-need</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.599</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.599/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>11482</start>
<end>11525</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with Multi-Agent Conversations
%A Kirstein, Frederic
%A Khan, Muneeb
%A Wahle, Jan Philip
%A Ruas, Terry
%A Gipp, Bela
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F kirstein-etal-2025-need
%X Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 points in difficulty). These findings show FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints.
%R 10.18653/v1/2025.findings-acl.599
%U https://aclanthology.org/2025.findings-acl.599/
%U https://doi.org/10.18653/v1/2025.findings-acl.599
%P 11482-11525
Markdown (Informal)
[You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with Multi-Agent Conversations](https://aclanthology.org/2025.findings-acl.599/) (Kirstein et al., Findings 2025)
ACL