@inproceedings{kuang-etal-2025-express,
title = "Express What You See: Can Multimodal {LLM}s Decode Visual Ciphers with Intuitive Semiosis Comprehension?",
author = "Kuang, Jiayi and
Li, Yinghui and
Wang, Chen and
Luo, Haohao and
Shen, Ying and
Jiang, Wenhao",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.660/",
doi = "10.18653/v1/2025.findings-acl.660",
pages = "12743--12774",
ISBN = "979-8-89176-256-5",
abstract = "Bridging the gap between visual and language remains a pivotal challenge for the multimodal community. Traditional VQA benchmarks encounter a modality gap and over-reliance on language priors, whereas human cognition excels at intuitive semiosis, associating abstract visual symbols to linguistic semantics. Inspired by this neurocognitive mechanism, we focus on emojis, the visual cipher conveying abstract textual semantics. Specifically, we propose a novel task of generating abstract linguistics from emoji sequence images, where such reasoning underpins critical applications in cryptography, thus challenging MLLMs' reasoning of decoding complex semantics of visual ciphers. We introduce eWe-bench (Express What you SeE), assessing MLLMs' capability of intuitive semiosis like humans. Our data construction framework ensures high visual sensitivity and data quality, which can be extended to future data enhancement. Evaluation results on advanced MLLMs highlight critical deficiencies in visual intuitive symbolic reasoning. We believe our interesting insights for advancing visual semiosis in MLLMs will pave the way for cryptographic analysis and high-level intuitive cognition intelligence of MLLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kuang-etal-2025-express">
<titleInfo>
<title>Express What You See: Can Multimodal LLMs Decode Visual Ciphers with Intuitive Semiosis Comprehension?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiayi</namePart>
<namePart type="family">Kuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinghui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haohao</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhao</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Bridging the gap between visual and language remains a pivotal challenge for the multimodal community. Traditional VQA benchmarks encounter a modality gap and over-reliance on language priors, whereas human cognition excels at intuitive semiosis, associating abstract visual symbols to linguistic semantics. Inspired by this neurocognitive mechanism, we focus on emojis, the visual cipher conveying abstract textual semantics. Specifically, we propose a novel task of generating abstract linguistics from emoji sequence images, where such reasoning underpins critical applications in cryptography, thus challenging MLLMs’ reasoning of decoding complex semantics of visual ciphers. We introduce eWe-bench (Express What you SeE), assessing MLLMs’ capability of intuitive semiosis like humans. Our data construction framework ensures high visual sensitivity and data quality, which can be extended to future data enhancement. Evaluation results on advanced MLLMs highlight critical deficiencies in visual intuitive symbolic reasoning. We believe our interesting insights for advancing visual semiosis in MLLMs will pave the way for cryptographic analysis and high-level intuitive cognition intelligence of MLLMs.</abstract>
<identifier type="citekey">kuang-etal-2025-express</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.660</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.660/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>12743</start>
<end>12774</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Express What You See: Can Multimodal LLMs Decode Visual Ciphers with Intuitive Semiosis Comprehension?
%A Kuang, Jiayi
%A Li, Yinghui
%A Wang, Chen
%A Luo, Haohao
%A Shen, Ying
%A Jiang, Wenhao
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F kuang-etal-2025-express
%X Bridging the gap between visual and language remains a pivotal challenge for the multimodal community. Traditional VQA benchmarks encounter a modality gap and over-reliance on language priors, whereas human cognition excels at intuitive semiosis, associating abstract visual symbols to linguistic semantics. Inspired by this neurocognitive mechanism, we focus on emojis, the visual cipher conveying abstract textual semantics. Specifically, we propose a novel task of generating abstract linguistics from emoji sequence images, where such reasoning underpins critical applications in cryptography, thus challenging MLLMs’ reasoning of decoding complex semantics of visual ciphers. We introduce eWe-bench (Express What you SeE), assessing MLLMs’ capability of intuitive semiosis like humans. Our data construction framework ensures high visual sensitivity and data quality, which can be extended to future data enhancement. Evaluation results on advanced MLLMs highlight critical deficiencies in visual intuitive symbolic reasoning. We believe our interesting insights for advancing visual semiosis in MLLMs will pave the way for cryptographic analysis and high-level intuitive cognition intelligence of MLLMs.
%R 10.18653/v1/2025.findings-acl.660
%U https://aclanthology.org/2025.findings-acl.660/
%U https://doi.org/10.18653/v1/2025.findings-acl.660
%P 12743-12774
Markdown (Informal)
[Express What You See: Can Multimodal LLMs Decode Visual Ciphers with Intuitive Semiosis Comprehension?](https://aclanthology.org/2025.findings-acl.660/) (Kuang et al., Findings 2025)
ACL