@inproceedings{zhang-etal-2025-divide,
title = "Divide-Verify-Refine: Can {LLM}s Self-align with Complex Instructions?",
author = "Zhang, Xianren and
Tang, Xianfeng and
Liu, Hui and
Wu, Zongyu and
He, Qi and
Lee, Dongwon and
Wang, Suhang",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.709/",
doi = "10.18653/v1/2025.findings-acl.709",
pages = "13783--13800",
ISBN = "979-8-89176-256-5",
abstract = "Recent studies show LLMs struggle with complex instructions involving multiple constraints (e.g., length, format, sentiment). Existing research enhances open-source LLMs using closed-source guidance (e.g., GPT-4), but this heavily relies on generated data quality. An alternative is leveraging LLMs' self-correction to refine responses for better constraint adherence. However, this is limited by the feedback quality, as we found LLMs cannot generate reliable feedback or detect errors. Moreover, the self-correction effectiveness relies on few-shot examples illustrating response modifications. As constraints in complex instructions are diverse, manually crafting such examples for each constraint type can be labor-intensive and sub-optimal. To address these two challenges, we propose the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide complex instructions into single constraints and prepare appropriate tools; (2) Verify responses using tools that provide rigorous check and textual guidance (e.g., Python scripts for format checks or pre-trained classifiers for content analysis); (3) Refine: To maximize refinement effectiveness, we propose dynamic few-shot prompting, where a refinement repository collects successful refinements, and these examples are selectively retrieved for future refinements. Recognizing the lack of complexity in existing datasets, we create a new dataset of complex instructions. DVR doubles Llama3.1-8B{'}s constraint adherence and triples Mistral-7B{'}s performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-divide">
<titleInfo>
<title>Divide-Verify-Refine: Can LLMs Self-align with Complex Instructions?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xianren</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianfeng</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zongyu</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongwon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suhang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Recent studies show LLMs struggle with complex instructions involving multiple constraints (e.g., length, format, sentiment). Existing research enhances open-source LLMs using closed-source guidance (e.g., GPT-4), but this heavily relies on generated data quality. An alternative is leveraging LLMs’ self-correction to refine responses for better constraint adherence. However, this is limited by the feedback quality, as we found LLMs cannot generate reliable feedback or detect errors. Moreover, the self-correction effectiveness relies on few-shot examples illustrating response modifications. As constraints in complex instructions are diverse, manually crafting such examples for each constraint type can be labor-intensive and sub-optimal. To address these two challenges, we propose the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide complex instructions into single constraints and prepare appropriate tools; (2) Verify responses using tools that provide rigorous check and textual guidance (e.g., Python scripts for format checks or pre-trained classifiers for content analysis); (3) Refine: To maximize refinement effectiveness, we propose dynamic few-shot prompting, where a refinement repository collects successful refinements, and these examples are selectively retrieved for future refinements. Recognizing the lack of complexity in existing datasets, we create a new dataset of complex instructions. DVR doubles Llama3.1-8B’s constraint adherence and triples Mistral-7B’s performance.</abstract>
<identifier type="citekey">zhang-etal-2025-divide</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.709</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.709/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>13783</start>
<end>13800</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Divide-Verify-Refine: Can LLMs Self-align with Complex Instructions?
%A Zhang, Xianren
%A Tang, Xianfeng
%A Liu, Hui
%A Wu, Zongyu
%A He, Qi
%A Lee, Dongwon
%A Wang, Suhang
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F zhang-etal-2025-divide
%X Recent studies show LLMs struggle with complex instructions involving multiple constraints (e.g., length, format, sentiment). Existing research enhances open-source LLMs using closed-source guidance (e.g., GPT-4), but this heavily relies on generated data quality. An alternative is leveraging LLMs’ self-correction to refine responses for better constraint adherence. However, this is limited by the feedback quality, as we found LLMs cannot generate reliable feedback or detect errors. Moreover, the self-correction effectiveness relies on few-shot examples illustrating response modifications. As constraints in complex instructions are diverse, manually crafting such examples for each constraint type can be labor-intensive and sub-optimal. To address these two challenges, we propose the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide complex instructions into single constraints and prepare appropriate tools; (2) Verify responses using tools that provide rigorous check and textual guidance (e.g., Python scripts for format checks or pre-trained classifiers for content analysis); (3) Refine: To maximize refinement effectiveness, we propose dynamic few-shot prompting, where a refinement repository collects successful refinements, and these examples are selectively retrieved for future refinements. Recognizing the lack of complexity in existing datasets, we create a new dataset of complex instructions. DVR doubles Llama3.1-8B’s constraint adherence and triples Mistral-7B’s performance.
%R 10.18653/v1/2025.findings-acl.709
%U https://aclanthology.org/2025.findings-acl.709/
%U https://doi.org/10.18653/v1/2025.findings-acl.709
%P 13783-13800
Markdown (Informal)
[Divide-Verify-Refine: Can LLMs Self-align with Complex Instructions?](https://aclanthology.org/2025.findings-acl.709/) (Zhang et al., Findings 2025)
ACL