@inproceedings{devasier-etal-2025-task,
title = "Task-Oriented Automatic Fact-Checking with Frame-Semantics",
author = "Devasier, Jacob and
Putta, Akshith Reddy and
Mediratta, Rishabh and
Li, Chengkai",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.711/",
doi = "10.18653/v1/2025.findings-acl.711",
pages = "13825--13842",
ISBN = "979-8-89176-256-5",
abstract = "We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="devasier-etal-2025-task">
<titleInfo>
<title>Task-Oriented Automatic Fact-Checking with Frame-Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Devasier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akshith</namePart>
<namePart type="given">Reddy</namePart>
<namePart type="family">Putta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rishabh</namePart>
<namePart type="family">Mediratta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengkai</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction.</abstract>
<identifier type="citekey">devasier-etal-2025-task</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.711</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.711/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>13825</start>
<end>13842</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Task-Oriented Automatic Fact-Checking with Frame-Semantics
%A Devasier, Jacob
%A Putta, Akshith Reddy
%A Mediratta, Rishabh
%A Li, Chengkai
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F devasier-etal-2025-task
%X We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction.
%R 10.18653/v1/2025.findings-acl.711
%U https://aclanthology.org/2025.findings-acl.711/
%U https://doi.org/10.18653/v1/2025.findings-acl.711
%P 13825-13842
Markdown (Informal)
[Task-Oriented Automatic Fact-Checking with Frame-Semantics](https://aclanthology.org/2025.findings-acl.711/) (Devasier et al., Findings 2025)
ACL