@inproceedings{lu-etal-2025-crossagentie,
title = "{CROSSAGENTIE}: Cross-Type and Cross-Task Multi-Agent {LLM} Collaboration for Zero-Shot Information Extraction",
author = "Lu, Meng and
Xie, Yuzhang and
Bi, Zhenyu and
Cao, Shuxiang and
Wang, Xuan",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.718/",
doi = "10.18653/v1/2025.findings-acl.718",
pages = "13953--13977",
ISBN = "979-8-89176-256-5",
abstract = "Large language models (LLMs) excel in generating unstructured text. However, they struggle with producing structured output while maintaining accuracy in zero-shot information extraction (IE), such as named entity recognition (NER) and relation extraction (RE). To address these challenges, we propose CROSSAGENTIE, a multi-agent framework that enhances zero-shot IE through multi-agent LLM collaboration. CROSSAGENTIE refines LLM predictions iteratively through two mechanisms: intra-group cross-type debate, which resolves entity-label conflicts through context-based evidence and confidence aggregation, and inter-group cross-task debate, where NER and RE mutually refine outputs via bidirectional feedback. Furthermore, we introduce template fine-tuning, distilling high-confidence multi-agent outputs into a single model, significantly reducing inference cost while preserving accuracy. Experiments across five NER and five RE datasets show that CROSSAGENTIE significantly outperforms state-of-the-art zero-shot baselines by a large margin. CROSSAGENTIE effectively addresses LLMs limitations in structured prediction with an effective and efficient approach for zero-shot information extraction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2025-crossagentie">
<titleInfo>
<title>CROSSAGENTIE: Cross-Type and Cross-Task Multi-Agent LLM Collaboration for Zero-Shot Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuzhang</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Bi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuxiang</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large language models (LLMs) excel in generating unstructured text. However, they struggle with producing structured output while maintaining accuracy in zero-shot information extraction (IE), such as named entity recognition (NER) and relation extraction (RE). To address these challenges, we propose CROSSAGENTIE, a multi-agent framework that enhances zero-shot IE through multi-agent LLM collaboration. CROSSAGENTIE refines LLM predictions iteratively through two mechanisms: intra-group cross-type debate, which resolves entity-label conflicts through context-based evidence and confidence aggregation, and inter-group cross-task debate, where NER and RE mutually refine outputs via bidirectional feedback. Furthermore, we introduce template fine-tuning, distilling high-confidence multi-agent outputs into a single model, significantly reducing inference cost while preserving accuracy. Experiments across five NER and five RE datasets show that CROSSAGENTIE significantly outperforms state-of-the-art zero-shot baselines by a large margin. CROSSAGENTIE effectively addresses LLMs limitations in structured prediction with an effective and efficient approach for zero-shot information extraction.</abstract>
<identifier type="citekey">lu-etal-2025-crossagentie</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.718</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.718/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>13953</start>
<end>13977</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CROSSAGENTIE: Cross-Type and Cross-Task Multi-Agent LLM Collaboration for Zero-Shot Information Extraction
%A Lu, Meng
%A Xie, Yuzhang
%A Bi, Zhenyu
%A Cao, Shuxiang
%A Wang, Xuan
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F lu-etal-2025-crossagentie
%X Large language models (LLMs) excel in generating unstructured text. However, they struggle with producing structured output while maintaining accuracy in zero-shot information extraction (IE), such as named entity recognition (NER) and relation extraction (RE). To address these challenges, we propose CROSSAGENTIE, a multi-agent framework that enhances zero-shot IE through multi-agent LLM collaboration. CROSSAGENTIE refines LLM predictions iteratively through two mechanisms: intra-group cross-type debate, which resolves entity-label conflicts through context-based evidence and confidence aggregation, and inter-group cross-task debate, where NER and RE mutually refine outputs via bidirectional feedback. Furthermore, we introduce template fine-tuning, distilling high-confidence multi-agent outputs into a single model, significantly reducing inference cost while preserving accuracy. Experiments across five NER and five RE datasets show that CROSSAGENTIE significantly outperforms state-of-the-art zero-shot baselines by a large margin. CROSSAGENTIE effectively addresses LLMs limitations in structured prediction with an effective and efficient approach for zero-shot information extraction.
%R 10.18653/v1/2025.findings-acl.718
%U https://aclanthology.org/2025.findings-acl.718/
%U https://doi.org/10.18653/v1/2025.findings-acl.718
%P 13953-13977
Markdown (Informal)
[CROSSAGENTIE: Cross-Type and Cross-Task Multi-Agent LLM Collaboration for Zero-Shot Information Extraction](https://aclanthology.org/2025.findings-acl.718/) (Lu et al., Findings 2025)
ACL